Solved Problems


Question 1:

A gas occupies one litre under atmospheric pressure. What will be the volume of the same amount of gas under 750 mm of Hg at the same temperature?

Solution.

Given V1 = 1 litre

P1 = 1 atm

V2 = ? 

P2 = 750 / 760 atm

Using

P1V1 = P2V2

We get

1 × 1 = 750 / 760 × V2

V2 = 1.0133 litre = 1013.3 ml

______________________________________________

Question 2:

How large a balloon could you fill with 4g of He gas at 22°C and 720 mm of Hg?

Solution.               

Given, P = 720 / 760 atm, T = 295K, w = 4g  

and m = 4 for He  

PV = w / M RT  

 = 720 / 760 × V = 4/4 × 0.0821 × 295  

∴ V = 25.565 litre    

____________________________________________________

Question 3:

Calculate the temperature at which 28g N2 occupies a volume of 10 litre at 

2.46 atm        

Solution.     

w = 28g, P = 2.46 atm, V = 10 litre, m = 28  

Now, PV = w / M RT (R = 0.0821 litre atm K–1 mole–1)  

T = 299.6 K    

__________________________________________________________

Question 4:

A gas occupies 300 ml at 27°C and 730 mm pressure what would be its volume at STP               

Solution            

V2 = 300 / 1000 litre, P2 = 730 / 760 atm, T2 = 300K  

At STP, V1= ? P1= 1 atm, T1= 273K  

P2V2 / T2 = P1V1 / T1 or V1 = 0.2622 litre  

Volume at STP = 262.2 ml    

_________________________________________________

Question 5:

In Victor Meyer’s experiment, 0.23g of a volatile solute displaced air which measures 112 ml at NTP. Calculate the vapour density and molecular weight of the substance.              

Solution 

Volume occupied by solute at NTP = Volume of air displaced at NTP   = 112 ml  

For volatile solute       PV = w / M RT  

at NTP, P = 1 atm, T = 273 K  

1 × 112/ 1000 = 0.23 / m × 0.0821 × 273   

 m = 46.02 and V.D. = 23.01

________________________________________________________________________

Question 6:

A cylindrical balloon of 21 cm diameter is to be filled up with H2 at NTP from a cylinder containing the gas at 20 atm at 27°C. The cylinder can hold 2.82 litre of water at NTP. Calculate the number of balloons that can be filled up. 

Solution

Volume of 1 balloon which has to be filled = 4/3 π (21/2)3 = 4851 ml   = 4.851 litre  

Let n balloons be filled, then volume of H2 occupied by balloons = 4.851 × n  

Also, cylinder will not be empty and it will occupy volume of H2 = 2.82 litre.  

∴ Total volume occupied by H2 at NTP = 4.851 × n + 2.82 litre  

∴ At STP  

P2 = 1 atm   Available H2  

V1= 4.851 × n + 2.82            P2 = 20 atm  

T1 = 273 K   T2 = 300K  

P1V1 / T2 = P2V2 / T2  V2 =  2.82 litre  

or 1 × (4.85 1n + 2.82 / 273) = 20 × 2.82 / 300 ∴ n = 10 

__________________________________________________

Question 7:

A 20g chunk of dry ice is placed in an empty 0.75 litre wire bottle tightly closed what would be the final pressure in the bottle after all CO­2 has been evaporated and temperature reaches to 25°C?    

Solution         

w = 20g dry CO2 which will evaporate to develop pressure  

m = 44, V = 0.75 litre, P = ? T = 298K  

PV = W / m RT  

P × 0.75 = 20 / 44 5  0.0821 × 298  

P = 14.228 atm  

Pressure inside the bottle = P + atm pressure  = 14.828 + 1 = 15.828 atm

_________________________________________________________   

Question 8:

The pressure of the atmosphere is 2 × 10–6 mm at about 100 mile from the earth and temperature is – 180°C. How many moles are there in 1 ml gas at this attitude?    

Solution       

Given, P = 2×10–6 / 760 atm  

T = – 180 + 273 = 93 K  

V = 1 ml = 1 / 1000 litre  

PV = nRT  

2 × 10–6 / 760 = n × 0.0821 × 93  

n = 3.45 × 10–13 mole    

__________________________________________________________

Question 9:

50 litre of dry N2 is passed through 36g of H2O at 27°C. After passage of gas, there is a loss of 1.20g in water. Calculate vapour pressure of water.    

Solution 

The water vapours occupies the volume of N2 gas i.e. 50 litre  

∴ For H2O vapour V = 50 litre, w = 1.20g, T = 300K, m = 18  

PV = w / m RT or P × 50 = 1.2 / 18 × 0.0821 × 300  

∴ P = 0.03284 atm   = 24.95 mm    

_____________________________________________________________

Question 10:

A mixture of CO and CO2 is found to have a density of 1.50g/litre at 30°C and 730 mm. What is the composition of the mixture?    

For a mixture of CO and CO2, d = 1.50 g/litre  

P = 730 / 760 atm, T = 303K  

PV = w / m RT; PV w / Vm  RT  

730 / 760 = 1.5 / m × 0.0821 × 303 =  ∴ 38.85  

i.e. molecular weight of mixture of CO and CO2 = 38.85  

Let % of mole of CO be a in mixture then  

Average molecular weight = a × 28 + (100 – a) 44 / 100  

38.85 = 28a + 4400 – 44a / 100  

a = 32.19  

Mole % of CO = 32.19  

Mole % of CO2 = 67.81    

____________________________________________________________________

Question 11:

The average speed of an ideal gas molecule at 27°C is 0.3 m sec–1. Calculate average speed at 927°C.    

Solution          

uav= √8RT / πM  

Given uav = 0.3 m sec–1 at 300K  

u1= 0.3 = √8R × 300 / πM  

at T = 273 + 927 = 1200K  

u2 = √8R × 1200 / πM  

u2 / 0.3 = √1200 / 300 u2 = 0.6 m sec–1  

__________________________________________________________________________

Question 12:

Pure O2 diffuses through an aperture in 224 seconds, whereas mixture of O2 and another gas containing 80% O2 diffuses from the same in 234 sec. What is the molecular weight of gas?    

Solution       

For gaseous mixture 80% O2, 20% gas  

Average molecular weight Mm = 32 × 80 + 20 × m / 100  

Now, for diffusion of gaseous mixture and pure O2  

rO2 / rm = √Mm / MO2 or VO2 / EO2 × Em / Vm = √Mm / MO2 

∴ 1 / 224 × 234 / 1 = √Mm / 32 ∴ Mm= 34.92    ∴ 32 × 80 + 20 × m / 100 = 34.92  

∴ m = 46.6    

________________________________________________________________________

Question 13:

Calculate the pressure exerted by 10–23 gas molecules, each of mass 10–22 g in a container of volume one litre. The rms speed is 105 cm sec–1.    

Solution              

Given, n = 1023 m = 10–22g V = 1 litre = 103cc  

urms = 105cm sec–1  

PV = 1/3 mnu2rms  

P × 103 = 1/3 × 10–22 × 1023 × (105)2  

P = 3.3 × 107dyne cm–2    

____________________________________________________________________________

Question 14:

Calculate the temperature at which CO2 has the same rms speed to that of O2 at STP.    

Solution

rrms of O2 = √3RT / M  at STP, urms of O2 = √3R × 273 / 32   

For CO2 urms CO2 = √3Rt / 44

Given both are same; 3R × 273 / 32 = 2RT / 44  

∴ T =375.38 K = 102.38°C    

____________________________________________________

Question 15:

Calculate the compressibility factor for CO2, if one mole of it occupies 0.4 litre at 300K and 40 atm. Comment on the result.    

Solution         

Compressibility factor (Z) = PV / nRT  

Z = 40 × 0.4 / 1 × 0.0821 × 300 = 0.65  

Z value is lesser than 1 and thus, nRT > PV. In order to have Z = 1, volume of CO2must have been more at same P and T or CO2 is more compressible than ideal gas.
 

Related Resources

To read more, Buy study materials of States of Matter comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Chemistry here.