Guest

Relation between A.M., G.M. and H.M.


Let there are two numbers ‘a’ and ‘b’, a, b > 0

then AM = a+b/2

 GM =√ab

 HM =2ab/a+b

 ∴ AM × HM =a+b/2 × 2ab/a+b = ab = (√ab)2 = (GM)2

 Note that these means are in G.P.

 Hence AM.GM.HM follows the rules of G.P.

 i.e. G.M. =√A.M. × H.M.

 Now, let us see the difference between AM and GM

 AM – GM =a+b/2 – √ab

=(√a2)+(√b)–2√a√b/2

 i.e. AM > GM

 Similarly,

 G.M. – H.M. = √ab –2ab/a+b

=√ab/a+b (√a – √b)2 > 0

 So. GM > HM

 Combining both results, we get

 AM > GM > HM                                                   …….. (12)

 All sequences of numbers cannot be put into A.P./G.P./H.P. Let us study these.
 

Important Points

r3 (r – 1)3 = 3 r2 – 3r + 1

r = 1 : 13 – 0 = 3 . 12 – 3 . 1 + 1

r = 2 : 23 – 13 = 3 . 22 – 3 . 2 + 1

r = 3 : 33 – 23 = 3 . 32 – 3 . 3 + 1

r = n : n3 – (n–1)3 = 3.(n2) – 3(n) + 1

Adding

n3 = 3 (12 + 22 +…+ n2) –3 (1 + 2 + 3 +…+ n) + (1 + 1 +…+ n times)

n3 = 3 Σnr=1 r2 – 3 (n(n+1))/2 + n

⇒ 3 Σnr=1 r2 = n3 + 3n(n+1)/2 – n

= n/2 (2n2 + 3n + 1)

 Σnr=1 r2 = n(n+1)(2n+1)/6

To read more, Buy study materials of Sequences and Series comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.


TOP Your EXAMS!

Upto 50% Scholarship on Live Classes

Course Features

  • Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution

r