Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
Meaning of Geometric Progression (G.P.)
Finite and Infinite Geometric Progression
How do you find the common ratio of a Geometric Sequence?
How can we check whether the sequence is Geometric Sequence or not?
Behavior of Common Ratio
What is a Geometric Series?
Formula of nth term or the general term of Geometric Series
Sum of a Finite Geometric Series
Sum of an Infinite Geometric Series
Geometric Mean
Geometric Mean of more than two numbers
Geometric Progression is the sequence of numbers such that the next term of the sequence comes by multiplying or dividing the preceding number with the constant (non-zero) number. And that constant number is called the Common Ratio. It is also known as Geometric Sequence.
a, ar, ar^{2}, ar^{3}, …, ar^{n}
The first term of the sequence is called the Initial Term or the scale factor which is denoted as ‘a’.
The ratio of a term to its next term of the sequence is called the Common Ratio, which is denoted by‘r’.
The general term that is, the nth term of the geometric progression with the initial term ‘a’ and the common ratio ‘r’ is as
a_{n} = a.r^{n-1}
Example
Consider the above figure:
Here the sequence is given as
Let’s check the value of the 4^{th} term using the nth term formula.
It is given in the above figure that the 4^{th} term is 1/16
The geometric progression with a limited number of terms is called Finite Sequence. It has a last term.
1, 2, 4, …, 64
This is a finite sequence with a =1 and r = 2
The geometric progression with unlimited number of terms is called Infinite Sequence. It does not have a last term.
1, 3, 9, 27, …
This is an infinite sequence with a = 1 and r = 3
The common ratio is the ratio of the term of the geometric sequence to its previous term. And it is denoted by “r”.
Sometimes we need to calculate the common ratio of the sequence. So to find the common ratio, we need to take the ratio of the terms with their preceding term.
What is the common ratio of the sequence?
3, 6, 12, 24, …
Solution:
Given
a_{1} = 3
a_{2} = 6
a_{3} =12
a_{4} = 24
Hence the common ratio is 2.
If we need to check whether the sequence is geometric sequence or not, we can use the formula of common ratio for this.
Example 1
Check whether the sequence is geometric sequence or not?
4, 8, 24, 96, …
a_{1} = 4
a_{2} = 8
a_{3} =24
a_{4} = 96
Let’s find the common ratio of the given sequence.
Here the ratio of all the terms with their preceding term is not constant, so this is not a geometric sequence.
Example 2
7, 21, 63, 189, …
a_{1} = 7
a_{2} = 21
a_{3} = 63
a_{4} = 189
Here the ratio of all the terms with their preceding term is constant that is, 3, so this is a geometric sequence.
It depends upon the value of the common ratio that the geometric progression is increasing or decreasing.
If the common ratio ‘r’ is positive then the geometric progression will be of same sign as the first term of the sequence that is, positive.
If the common ratio ‘r’ is negative then the geometric progression will be of same sign as the first term of the sequence that is, negative.
If the common ratio ‘r’ is greater than 1, then the geometric progression will be in the exponential growth towards positive infinity.
If the common ratio ‘r’ is less than -1, then the geometric progression will be in the exponential growth towards (unsigned) infinity, due to the alternating sign.
If the common ratio ‘r’ is between -1 and 1(not zero), then the geometric progression will be exponential decay toward zero.
If the common ratio ‘r’ is zero, then the result will remain zero.
When we add the terms of the geometric progression then that sum is the geometric series. Like, the GP, the ratio between every consecutive term is always constant.
The geometric series is in the form of
a+ ar+ ar^{2}+ ar^{3}+ …+ ar^{n}
where a is the first term of the series and r is the common ratio.
If a is the first term, r is the common ratio and n is the total number of the terms, then the formula for nth term is given by
What is the 6^{th} term of the series 2 + 4 + 8 + 16 +…?
In the given series a = 2 and r = 2
So we will put the values in the formula of nth term of the series.
Here n = 6 as we have to find the 6^{th} term.
a_{6} = 2.2^{6-1}
= 2 .32
= 64
So the 6^{th} term of the series will be 32.
If r ≠ 1
If a is the first term and r is the common ratio of the series with n number of terms, then the sum of the series
will be
Find the sum of the given geometric progression
a = 2 (first term)
r = 2 (common difference)
n = 5 (as the total number of terms of the series is 5)
Now we will put the values in the formula
If r = 1
If r =1 then the series will be in the form of
a + a + a + a +…..a (nth term)
The sum of the n terms will be
S_{n} = an
If we have to find the sum of the infinite geometric series then we will use the different formula.
When -1 < r <1 and n is infinite that is, ∞, then r^{n }will tend to zero
So in the above formula of the sum of finite geometric series , r^{n} is 0 and it will become a new formula that is,
Find the sum of the series.
a = 1 and r = 1/3
As we can see that -1 < r < 1, then we can use the formula
Geometric Mean is the average of two numbers. If a and b are the two numbers then the geometric mean will be
GM = √ab
Find the geometric mean of 2 and 18.
We can use the above formula to calculate the geometric mean.
a = 2 and b = 18
Here we can see that the sequence 2, 6, 18 is a geometric progression.
We can calculate the geometric mean of more than two numbers also as for calculating the geometric mean we have to multiply all the numbers and then take the nth root of that number. that is, If we are multiplying two numbers, we are taking the square root, as we had taken in the above example.
If we will multiply three numbers then we will take the cube root. Likewise, if we are multiplying n number of terms then we will take the nth root of the number.
GM = ^{n}√ (a_{1} × a_{2} × ... × a_{n})
What is the Geometric Mean of 1, 3, 9, 27 and 81?
a_{1} = 1
a_{2} = 3
a_{3} =9
a_{4} = 27
a_{5} = 81
First we will multiply the given numbers
1 × 3 × 9 × 27 × 81 = 59049
Then take the 5th root ( that is, the nth root where n = 5)
^{5}√59049 = 9
Geometric Mean = ^{5}√ (1 × 3 × 9 × 27 × 81) = 9
We can insert two or more numbers between the two given numbers to form a Geometric progression.
Let G _{1}, G_{2} ,…, G _{n} be n numbers between positive numbers a and b such that
a, G _{1}, G _{2}, G _{3},…, G _{n}, b is a G.P.
Here, b is the (n + 2) th term, that is,
Thus, n numbers between a and b is as follows:
Insert 2 numbers between 1 and 64 such that the resulting sequence is a G.P.
Let G _{1} and G_{2} ,be the two numbers between 1 and 64 such that
1, G _{1}, G_{2} , 64
the sequence is in G.P.
Here, a_{4} = 64
Hence r^{3} = 64 (the cube root of 64)
Thus, G _{1} = ar = 1.4 = 4
G_{2 }= ar^{2} = 1.4^{2} = 16
Hence, two numbers between 1 and 64 are 4 and 16 which in turn are making a Geometric sequence.
1, 4, 16, 64
More Readings
Geometric Progression (G.P.)
Harmonic Mean Table of Content Formula for...
Examples Based on Relationship between AM, GM and...
Arithmetic Mean between two numbers When three...
Relationship between A.M. and G.M. Table of...
Arithmetic Progression (A.P.) Table of contents...
Sum of first n terms of AP A sequence of numbers...
Arithmetic Mean Examples What exactly do you mean...
Weighted Means Let a 1 , a 2 , ……, a...
Basic Principle of AP Progressions and series...
Solved Examples based on GP Solved examples :...
Sum to n terms of Special Series Table of contents...
Solved Examples Based on Harmonic mean...
Sequences Table of contents Meaning of Sequence...
Geometric Progression Geometric Progression as the...
Method of Differences Suppose a 1 , a 2 , a 3 ,...
Download IIT JEE Solved Examples Based on...
Basic Concepts of Sequences and Pattern Table of...
Relation between A.M., G.M. and H.M. Let there are...
Introduction of Sequences and Series Table of...
Harmonic Progression Harmonic progression is an...
Arithmeticogeometric Progression Solved Examples...
Arithmetic-Geometric Progression Suppose a 1 , a 2...
Geometric Mean Geometric Mean between two numbers...
Arithmetic Mean of mth Power The concept of...
Series Table of contents Meaning of Series History...