Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
An angle made up of the algebraic sum of two or more angles is called a compound angle. Some of the formulae and results regarding compound angles are:
sin(A + B) = sinA cosB + coA sinB
sin(A – B) = sinA cosB – cosA sinB
cos(A + B) = cosA cosB – sinA sinB
cos(A – B) = cosA cosB + sinA sinB
tan(A + B) = tanA + tan B/ 1 - tan A tanB
tan(A – B) = tanA - tan B/ 1 + tan A tan B
sin(A + B) sin(A – B) = sin2A – sin2B = cos2B – cos2A.
cos(A + B) = cos(A – B) = cos2A – sin2A – sin2B = cos2B – sin2A.
Prove that tan70o = 2 tan50o + tan20o.
tan70o = tan(50o + 20o)
= tan 50o + tan 20o/1 - tan 50o. tan 20o
or, tan70o (1 – tan 50o tan20o) = tan50o + tan20o
or, tan70o = tan70o tan50o tan20o + tan50o + tan20o
= cot20o tan50o tan20o + tan50o + tan20o
= 2 tan50o + tan20o.
If A + B = 45o, show that (1 + tanA) (1 + tanB) = 2.
tan(A + B) = tan A + tan B / 1 - tan A tan B = 1
tanA + tanB + tanA tanB + 1 = 1 + 1
tanA (1 + tanB) + (1 + tanB) = 2
(1 + tanA) (1 + tanB) = 2
sin2A = 2sinA cosA = 2tan A/ 1 + tan2 A
cos2A = cos2A – sin2A = 1 – 2sin2A = 2 cos2A – 1 = 1 - tan2 A/1 + tan2 A
tan2A = 2tan A/ 1 - tan2 A
sin3A = 3sinA – 4sin3A = 4sin(60o – A) sinA sin(60o + A)
cos3A = 4cos3A – 3cosA = 4cos(60o A) cosA cos(60o + A)
tan3A = 3tan A - tan3 A/1 - 3 tan2 A = tan(60o – A) tan A tan (60o + A)
Find the values of (i) sin 18o (ii) tan 15o
(i) sin 18o
Let θ = 18o then 2θ = 36o = 90o – 3θ.
Now sin2θ = 2sinθ cosθ and
sin(90o – 3θ) = cos3θ = 4cos3θ – 3cosθ
Hence, 2 sinθ = 1 – 4sin2θ (as cosθ # 0)
⇒ 4sin2θ + 2sinθ – 1 = 0 ⇒ sinθ = -2 + √4 + 16 /2.4 = -1 + √5/4
But as sinθ > 0 we have sinθ = √5 - 1/4 i.e. sin18o = √5 + 1/4
(ii) tan 150o
tan 150o = tan (60o – 45o) = √3 - 1/ 1 + √3 = (√3 - 1)2/3 -1 = 4 - 2 √3/2 = 2 - √3 .
sin A + sinB = 2sin A + B/2 cos A - B/2
sin A – sin B = 2sin A - B/2 cos A + B/2
cos A + cosB = 2cos A - B/2 cos A + B/2
cos A – cos B = –2sin A - B/2 sin A + B/2 (here notice (B – A))
tan A + tanB = sin (A + B )/ cos A. cos B
2sinA cosB = sin(A + B) + sin (A – B)
2cosA sinB = sin(A + B) – sin (A – B)
2cosA cosB = cos(A + B) + cos (A – B)
2sinA sinB = cos(A – B) – cos (A + B)
If α, ß and g are in A.P., show that cotß = sin α - sinγ/ cosγ - cosα .
Solution:
Since α, ß and y are in A.P., 2ß = α + y ⇒ cotß = α+y/2
= (cosα+y/2) / sinα+y/2 = (2cosα+y/2 sinα+y/2)/ 2sinα+y/2sinα+y/2 = sin α - siny/ cos y - cosα .
Show that sin 12o.sin48o.sin54o = 1/8.
L.H.S. = [cos 36o – cos 60o]sin 54o = 1/2 [cos 36o sin 54o sin 54o]
= 1/4 [2 cos 36o sin 54o – cos 54o] = 1/4 [sin 90o + sin 18o – sin 54o]
= 1/4 [1 – (sin 54o– cos 18o)] = 1/4 [1 – 2sin 18o cos 36o]
= 1/4 [ 1 - 2sin 18° cos36°] = 1/4 [1 - sin36° cos 36°/ cos18° ]
= 1/4 [ 1 - 2sin 36° cos6°/2cos18°] = 1/4 [ 1 - sin 72°/2sin72°] = 1/4 [ 1 - 1/2 ] = 1/8 = R.H.S.
Let θ = 12o.
L.H.S. = 1/sin72° sin 12o sin 48o sin 72o sin 54o
= 1/ 4sin 72° 4 sin(60o – 12o) sin 12o sin (60o + 12o) sin 54o.
= 1/4 sin3 (12°) sin 54°/ sin72° = sin 36° sin 54°/ 8 sin 36° cos36° = 1/8 = R.H.S. To read more, Buy study materials of Inverse Trigonometric Functions comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Trigonometric Ratios of Submultiple of an Angle |...
Solved Examples on Trigonometric Ratios...
Trigonometric Ratios Positive and Negative Angles|...
Trigonometric Ratios Table | IIT JEE Trigonometry...