Guest

Trigonometric Ratios of Compound Angles | IIT JEE Compound Angles

 

An angle made up of the algebraic sum of two or more angles is called a compound angle. Some of the formulae and results regarding compound angles are:

  • sin(A + B) = sinA cosB + coA sinB

  • sin(A – B) = sinA cosB – cosA sinB

  • cos(A + B) = cosA cosB – sinA sinB

  • cos(A – B) = cosA cosB + sinA sinB

  • tan(A + B) = tanA + tan B/ 1 - tan A tanB

  • tan(A – B) = tanA - tan B/ 1 + tan A tan B

  • sin(A + B) sin(A – B) = sin2A – sin2B = cos2B – cos2A.

  • cos(A + B) = cos(A – B) = cos2A – sin2A – sin2B = cos2B – sin2A.


Illustration:

Prove that tan70o = 2 tan50o + tan20o.

Solution:

tan70o = tan(50o + 20o)

= tan 50o + tan 20o/1 - tan 50o. tan 20o

or, tan70o (1 – tan 50o tan20o) = tan50o + tan20o

or, tan70o = tan70o tan50o tan20o + tan50o + tan20o

= cot20o tan50o tan20o + tan50o + tan20o

= 2 tan50o + tan20o.


Illustration:

If A + B = 45o, show that (1 + tanA) (1 + tanB) = 2.

Solution:

tan(A + B) = tan A + tan B / 1 - tan A tan B = 1

tanA + tanB + tanA tanB + 1 = 1 + 1

tanA (1 + tanB) + (1 + tanB) = 2

(1 + tanA) (1 + tanB) = 2


Trigonometric Ratios of Multiples of an Angle

  • sin2A = 2sinA cosA = 2tan A/ 1 + tan2 A

  • cos2A = cos2A – sin2A = 1 – 2sin2A = 2 cos2A – 1 = 1 - tan2 A/1 + tan2 A

  • tan2A = 2tan A/ 1 - tan2 A

  • sin3A = 3sinA – 4sin3A = 4sin(60o – A) sinA sin(60o + A)

  • cos3A = 4cos3A – 3cosA = 4cos(60o A) cosA cos(60o + A)

  • tan3A = 3tan A - tan3 A/1 - 3 tan2 A = tan(60o – A) tan A tan (60o + A)


Illustration:

Find the values of (i) sin 18o (ii) tan 15o

Solution:

(i) sin 18o

Let θ = 18o then 2θ = 36o = 90o – 3θ.

Now sin2θ = 2sinθ cosθ and

sin(90o – 3θ) = cos3θ = 4cos3θ – 3cosθ

Hence we have 2sinθcosθ = cosθ (4cos2θ – 3) = cosθ (1 – 4sin2θ).

Hence, 2 sinθ = 1 – 4sin2θ (as cosθ # 0)

⇒ 4sin2θ + 2sinθ – 1 = 0 ⇒ sinθ = -2 + √4 + 16 /2.4 = -1 + √5/4

But as sinθ > 0 we have sinθ = √5 - 1/4 i.e. sin18o = √5 + 1/4

(ii)  tan 150o

 tan 150o = tan (60o – 45o) = √3 - 1/ 1 + √3 = (√3 - 1)2/3 -1 = 4 - 2 √3/2 = 2 - √3 .


Sum of sines/Cosines in Terms of Products

  • sin A + sinB = 2sin A + B/2  cos A - B/2

  • sin A – sin B = 2sin A - B/2  cos A + B/2

  • cos A + cosB = 2cos A - B/2  cos A + B/2

  • cos A – cos B = –2sin A - B/2  sin A + B/2  (here notice (B – A))

  • tan A + tanB = sin (A + B )/ cos A. cos B

Conversely
  • 2sinA cosB = sin(A + B) + sin (A – B)

  • 2cosA sinB = sin(A + B) – sin (A – B)

  • 2cosA cosB = cos(A + B) + cos (A – B)

  • 2sinA sinB = cos(A – B) – cos (A + B)


Illustration:

If α, ß and g are in A.P., show that cotß = sin α - sinγ/ cosγ - cosα .

Solution:

Since α, ß and y are in A.P., 2ß = α + y ⇒ cotß = α+y/2

= (cosα+y/2) / sinα+y/2 = (2cosα+y/2 sinα+y/2)/ 2sinα+y/2sinα+y/2 = sin α - siny/ cos y - cosα  .


Illustration:

Show that sin 12o.sin48o.sin54o = 1/8.

Solution:

L.H.S. =  [cos 36o – cos 60o]sin 54o = 1/2  [cos 36o sin 54o  sin 54o]

= 1/4  [2 cos 36o sin 54o – cos 54o] = 1/4 [sin 90o + sin 18o – sin 54o]

= 1/4  [1 – (sin 54o– cos 18o)] = 1/4  [1 – 2sin 18o cos 36o]

= 1/4 [ 1 - 2sin 18° cos36°] = 1/4 [1 - sin36° cos 36°/ cos18° ]

= 1/4 [ 1 - 2sin 36° cos6°/2cos18°] = 1/4 [ 1 - sin 72°/2sin72°] = 1/4 [ 1 - 1/2 ] = 1/8 =  R.H.S.


Alternative Method

Let θ = 12o.

L.H.S. = 1/sin72° sin 12o sin 48o sin 72o sin 54o

= 1/ 4sin 72° 4 sin(60o – 12o) sin 12o sin (60o + 12o) sin 54o.

= 1/4 sin3 (12°) sin 54°/ sin72° = sin 36° sin 54°/ 8 sin 36° cos36° = 1/8  = R.H.S.

To read more, Buy study materials of Inverse Trigonometric Functions comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.


TOP Your EXAMS!

Upto 50% Scholarship on Live Classes

Course Features

  • Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution

r