Example 1: If ∫ xex cos x dx = f(x) dx + c, then f(x) is equal to
∫ xe(1 + i)x / 1+i – ∫ e(1+i)x / 1 + i dx = xe(1+i)x / 1+ i – e(1+i)x / (1+i)2
e(1 + i)x[x(1 + i –1 / (1+i)2)]
ex (cos x + i sin x) [(x–1) + ix / 1 + i – 1]
ex/–2 [icos x – sin x][(x – 1) + ix]
I = ex/2 [(1 – x) sin x – x cos x] + c.
Example 2: Let x2 +1 ≠ nπ, n ∈ N, then
(a) ln |1/2 sec (x2 + 1) | + c
(b) ln | sec { ½ (x2 + 1) | + c
(c) 1/2 ln | sec (x2 + 1) | + c
(d) ln | sec (x2 + 1) | + c
Solution: Let
I =
Put x2 + 1= t
x dx = ½ dt
Then I = ½ ∫ √ (2 sin t – sin 2t)/(2 sin t + sin 2t) dt
= ½ ∫ √ (1 - cos t)/(1 + cos t) dt
= ½ ∫ tan (t/2) dt
= ½ .2. ln | sec (t/2)| + c
= ln | sec {(x2+1)/2} + c
= ln | sec {1/2 (x2 + 1)} + c
Example 3: Let f(x) be a function such that f(0) = f’(0) = 0, f”(x) = sec4x + 4, then the function is
(a) ln |(sin x)| + 1/3 tan3x + x
(b) 2/3 ln |(sec x)| + 1/6 tan2x + 2x2
(c) ln |cos x| + 1/6 cos2x – x2/5
(d) none of these
Solution: Since f”(x) = sec4x + 4
So, f”(x) = (1 + tan2x) sec2x + 4
Therefore, f’(x) = tan x + tan3x/3 + 4x + c
Since, f’(0) = 0
So, 0 = c
Then, f’(x) = tan x + + tan3x/3 + 4x
= tan x + 1/3 tan x (sec2x – 1) + 4x
f’(x) = 2/3 tan x + 1/3 tan x sec2x + 4x
So, f(x) = 2/3 ln | sec x| + tan2 x/6 + 2x2 + d
But, f(0) = 0
So, d = 0
Then, f(x) = 2/3 ln | sec x | + 1/6 tan 2x + 2x2.
Example 4: ∫ x-2/3 (1 + x1/2)-5/3 dx is equal to
(a) 3(1 + x-1/2)-1/3 + c
(b) 3(1 + x-1/2)-2/3 + c
(c) 3(1 + x1/2)-2/3 + c
(a) none of these
More than one
Example 5: more than one
If
(a) A = 3/2
(a) B = 35/36
(a) C is indefinite
(a) A + B = -19/36
Example 6: Fill in the blanks: ∫ √ x + √(x2 + 1) dx is equal to
Example 7: True/false: The antiderivative of f(x) = ln(ln x) + (ln x)-2 whose graph passes through (e, e) is x ln(ln x) – x(ln x)-1.
Solution:
To read more, Buy study materials of Indefinite integral comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.