Join now for JEE/NEET and also prepare for Boards Learn Science & Maths Concepts for JEE, NEET, CBSE @ Rs. 99! Register Now
Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
Limitations of Ohm’s Law
Summary
Although Ohm’s law is an important principle in the field of electronics, it cannot be considered as an actual physical law. We know that as per ohm’s law voltage / current = a constant and that constant is the resistance. But the resistance does not remain constant all the time. When the current passes through a material, it heats up. When the temperature of the material changes, the resistance changes. So when the resistance changes, and we divide the voltage across the resistor by the current passing through it, we will not get the same numbers always.
Ohm’s law is applicable and valid for many materials. But there are some materials that do not support the ohm’s law. Some materials and devices which are used in electric circuits do not have the proportionality between voltage and current. For Example, consider a diode and plot a graph between voltage and current. When the value of voltage is marked in the reverse direction by keeping the magnitude fixed, it produces the current with different magnitude in the opposite direction. The relationship between the voltage and current is not linear.
Diodes
For Example when we p- n junction diode is forward biased, initially the current rises slowly even though the voltage increases and the current rises rapidly. Non – linear elements do not support ohm’s law. Thyristor and electric arc are examples for this. Materials like Ga As produces more than one value of V for the same value of current.
Diode do not support Ohm’s law
Consider a water voltameter. Here although the voltage is increased the current increases only after a certain value of voltage. Ohm’s law is not applicable for unilateral networks. The conductors which does not obey ohm’s law is called Non – Ohmic Conductors. Semi – conductors like Germanium and silicon do not obey Ohm’s law. Other examples include transistor, vacuum tubes, diode and triode valve. The circuits which consists of non - ohmic conductors are known as Non – Ohmic Circuits. Ohm’s law is valid only when the temperature and other physical parameters do not affect the resistance of the metals conductors.
Another example is incandescent bulb. The tungsten filament which is present in the bulb is heated up when the voltage increases, the resistance of the wire changes. So the bulb filament does not support ohm’s law. The law is not applied for LED, which is a light emitting diode.
George Simon Ohm stated the Ohm’s law. He stated that the electric current flowing through a wire will be directly proportional to the potential difference across the ends when the temperature remains constant. That constant is the resistance. V = I R
As per ohm’s law voltage / current = a constant. The resistance of a material changes when the temperature changes. So when the resistance changes, the ratio of the voltage across the resistor and the current passing through it will not be a constant. We will not get the same numbers always.
Non – linear elements and unilateral networks do not support ohm’s law. Examples are diodes, transistor etc. The conductors which does not obey ohm’s law is called Non – Ohmic Conductors. Incandescent bulb do not support ohm’s law.
Watch this Video for more reference
More Readings
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Resistance and Resistivity Table of Content...
Basic Concepts In electrostatics we have seen that...
Electrical Energy and Power Table of contents...
Mechanism of current flow in a metallic conductor...
Cells, EMF, Internal Resistance Table of Content...
Electric Current and Current Density Table of...
Meter Bridge Table of contents Wheatstone Bridge...
Specific Resistance of the Material of a wire...
Maximum Power Transfer Theorem Table of Content...
Combination of Resistors – Series and...
Grouping of Identical Cells Series Grouping E.m.f....
Int Introduction of Current Electricity Table of...
Variation of Resistivity with Temperature We have...
Drift of Electrons and the Origin of Resistivity...
Emf and Grouping of cells Table of Content...
Resistivity of Various Materials Table of contents...
Drift Velocity The average velocity attained by...
Temperature Dependence of Resistivity Table of...
Wheatstone Bridge Table of contents Introduction...
Solved Examples of Comlicated Circuits...
Kirchhoff’s Law Table of contents Current...
Potentiometer Table of contents Potentiometer and...
Thermal and Chemical Effect of current Table of...
Ohm’s Law Table of contents Voltage, Current...
Constant Potential Difference Table of Content...
Complicated Circuits As the name suggests,...
Errors The major systematic errors in this...
Cells in Series and in Parallel Table of Content...
Effective Grouping of Cells The flow of current...
Measurement of an unknown resistance using a Post...