Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.

Use Coupon: CART20 and get 20% off on all online Study Material

Total Price: Rs.

There are no items in this cart.
Continue Shopping

General Theorems on Differentiation


General Theorems on Differentiation

General Theorems on Differentiation

Chain Rule

If y = f(u) and u = g(x), then dy/dx = dy/dx.du/dx = f' (g(x) ) g' (x)

e.g. Let y = [f(x)]n. We put u = f(x). so that y = un.

                Therefore, using chain rule, we get

                dy/dx = dy/dx.du/dx = nu(n-1)   [f' (x)](n-1) f' (x)

Differentiation of parametrically defined functions 

Important note If x and y are functions of parameter t, first find dx/dt and dy/dt separately.

Important note Then dy/dx=(dy/dt)/(dx/dt)

e.g., x=a(Θ + sin Θ), y = a(1-cos Θ) where Θ is a parameter.

dy/dx = (dy/dΘ)/(dx/dΘ) = (a sinΘ)/(a (1+cos Θ))

         = (2sin Θ/2 cos Θ/2 )/(2 cos2 Θ/2 ) = tan Θ/2

Higher Order Derivatives

(d2 y)/dx2 - d/dx (dy/dx),   (d3 y)/dx3  = d/dx ((d2 y)/(dx2 ))

(dn y)/dxn -d/dx ((d(n-1) y)/dx(n-1) );   (dn y)/dxn  

is called the nth order derivative of y with respect to x.


        If y = (sin-1x)+ k sin-1x, show that (1-x2) (d2 y)/dx2 - x dy/dx = 2


          Here y = (sin-1x)+ k sin-1x.

       Differentiating both sides with respect to x, we have

     Dy/dx = 2(sin-1 x)/√(1-x2 ) + k/√(1-x2 )

⇒(1-x2 ) (dy/dx)2 = 4y + k2

      Differentiating this with respect to x, we get

       (1-x2) 2 dy/dx.(d2 y)/(dx2 ) - 2x (dy/dx)2 = 4(dy/dx)

⇒(1-x2 ) ( d2 y)/dx2 -x dy/dx = 2


If y =esin2 x, find (d2 x)/dy2 in terms of x.


Here y =esin2 x. Differentiating with respect to x, we get

 dy/dx=sin 2x.esin2 x  ⇒dx/dy = cosec 2x.e-sin2 x

 Differentiating with respect to y, we get

  (d2 x)/dy2 = d/dy (cosec 2x.e-sin2 x ) = d/dx (cosec 2x.e- sin2 x ) dx/dy

             = (-2 cosec 2xcot 2x e-sin2 x - e-sin2 x)

            = (-2 cosec2 2x cot 2x + cosec 2x) e-sin2 x

To read more, Buy study materials of Limtis and Continuity comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.


Upto 50% Scholarship on Live Classes

Course Features

  • Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution