#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-5470-145

+91 7353221155

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

# Solved Examples of Definite Integral

Solved Examples 30.The value of  ∫1000(√x)dx ( where {x} is the fractional part of x) is

(A) 50

(B) 1

(C) 100

(D) none of these

Solution:       Given integral = 1000 (√x–[√x])dx               ( by the def. of {x} ) Hence (D) is the correct answer.

31.                   The value of  10   (|sin 2 p x| dx is equal to

(A) 0                                                          (B)  2/π

(C) 1/π                                                      (D) 2

Solution:       Since |sin 2 π x | is periodic with period 1/2,

I =  10  |sin 2 π x| dx= 2 10  sin 2 π x dx

= 2 [–cos2πx/2π]1/20 = 2/π

Hence (B) is the correct answer.

32.                   Let f : R —> R, f(x) = , where [.] denotes greatest integer function, then 4–2 f(z)dx is equal to

(A) 5/2                                                            (B) 3/2

(C) 5                                                               (D) 3

 Solution:       x – [x] = {x}                         x – [x +1] ={x} – 1                         ∫4–2 f(x)dx = 6.1/2 (1.1) = 3                         Hence (D) is the correct answer. 1. 33. is equal to

(A) 0                                                               (B) 2

(C) e                                                               (D) none of these

Solution:       I = property a–a f(x)dx = 0 (f (–x) = –f (x), odd function)

Hence I = 0

Hence (A) is the correct answer.

34.                 The value of 10–10 3x/3[x] dx is equal to (where [.] denotes greatest integer function) :

(A) 20                                                   (B) 40 / In3

(C) 20 / In 3                                          (D) none of these Hence (B) is the correct answer.

35.                 Values of +1/2–1/2 cos x log 1+x/1–x dx is :

(A) 1/2                                                  (B) – 1/2

(C) 0                                                     (D) none of these

Solution:     I = +1/2–1/2 cos x log 1+x/1–x dx

f (x) = cos x ln 1+x/1–x

f (- x) = cox (- x) ln 1+x/1–x

= - cos (x) ln (1+x/1–x) = – f (x)

f (x) is an odd function

hence I = 0

Hence (C) is the correct answer.

36.                 f (x) = min (tan x, cot x), 0 < x < , then π/20 f(x)dx is equal to :

(A) ln2                                                  (B) ln √2

(C) 2 ln √2                                           (D) none of these

 Solution:     f (x) = min (tan x, cot x),                               ∈ [0, π/2]                       f (x) = tan x,    0 < x <  π/4                              = cot x,    π/4  < x < π/4                       Hence 2 ln √2  = ln 2.                       Hence (A) is the correct answer. 37.                 The value of is equal to :

(A)  π/2                                                 (B) 2π

(C) π                                                     (D) π/p

Solution:     I = Hence (B) is the correct answer.

38.                 The value of is equal to :

(A) 2 – 1/e                                  (B) 2 + 1/e

(C) e+1/e                                   (D) none of these

Solution:     I = = |x–e–x|10 (1 - e-1) - (0 - 1) = 2 - e-1

Hence (A) is the correct answer.

39. has the value is :

(A) 0                                                      (B) 1/2

(C) 1                                                     (D) 1/4 Hence (A) is the correct answer.

40. is :

(A) 0                                                      (B) 1

(C) π/2                                                  (D) π/4 Hence (D) is the correct answer.

41.                 The value of depends on :

(A) p                                                      (B) q

(C) r                                                      (D) p and q

Solution:     I = = q (Since sin3x and sin5 x are odd functions)

Hence (B) is the correct answer.

To read more, Buy study materials of Definite integral comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.