Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
The equation of a travelling sound wave is y = 6.0 sin (600 t – 1.8 x) where y is measured in 10–5 m, t in second and x in metre. (a) Find the ratio of the displacement amplitude of the particles to the wavelength of the wave. (b) Find the ratio of the velocity amplitude of the particles to the wave speed. The equation of a travelling sound wave is y = 6.0 sin (600 t – 1.8 x) where y is measured in 10–5 m, t in second and x in metre.(a) Find the ratio of the displacement amplitude of the particles to the wavelength of the wave. (b) Find the ratio of the velocity amplitude of the particles to the wave speed.
Here given r base y = 6.0 * 10^-5 m a) Given 2π/λ = 1.8 ⇒ λ = (2π/1.8) So, r base y/ π = 6.0 * (1.8) * 10^-5 m/s /2π = 1.7 * 10^-5 m b) Let, velocity amplitude = V base y V = dy/dt = 3600 cos (600 t – 1.8) × 10^–5 m/s Here V base y = 3600 × 10^–5 m/s Again, λ = 2π/1.8 and T = 2π/600 ⇒ wave speed = v = λ/T = 600/1.8 = 1000 / 3 m/s. So the ratio of (V base y/v) = 3600 * 3 *10^-5/1000
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -