Flag Wave Motion> find the point where th kienatic and pote...
question mark

find the point where th kienatic and potential energy is equal in SHM?

Akbar Ali , 6 Years ago
Grade 12th pass
anser 1 Answers
Arun

Last Activity: 6 Years ago

A simple realization of the harmonic oscillator in classical mechanics is a particle which is acted upon by a restoring force proportional to its displacement from its equilibrium position. Considering motion in one dimension, this means

F=−kx

Such a force might originate from a spring which obeys Hooke’s law

The force constant k is a measure of the stiffness of the spring. The variable x is chosen equal to zero at the equilibrium position, The negative sign shows restoring force, always in the opposite sense to the displacement x.

F = m .{d^2 x / dx^2} = −kx

where m is the mass of the body attached to the spring, which is itself assumed massless. This leads to a differential equation of familiar form, although with different variables:

the solution of the differential equation is of the form

x = A sin wt where

w= sqrt(k/m) and A is maximum displacement called amplitude,

if at t=0 x=0

thus the velocity at any time t will be

dx/dt = A.w.cos(wt)

so the kinetic energy at time t

(1/2) m. vel^2 = (1/2) m. {A^2. w^2 Cos^2 (wt)}

The general relation between force and potential energy in a conservative system in one dimension is

F = −(dV / dx) i.e. the force is derived as negative rate of change of potential

Thus the potential energy of a harmonic oscillator is given by

V(x) = (1/2). k .x ^2

which has the shape of a parabola,turning points ±x(max)

where the total energy E equals the potential energy (1/2). k .x ^2 while the kinetic energy is momentarily zero.

In contrast, when the oscillator moves past x=0 the kinetic energy reaches its maximum value while the potential energy equals zero.

therefore the two forms of energy are being shared with total E constant.

Now let at any instant t the two energies are equal

K.E. = P.E.

so (1/2) m. {A^2. w^2 Cos^2 (wt)} = (1/2). k .x(t) ^2 = (1/2). k .( A sin wt )^2

Both are equal to (1/2) total Energy

so its possible if wt= pi/4 where sin and cos function will have same value.

at wt= pi/4 the displacement x will be

x= a sin(wt) = A. sin (pi/4) = A. (1/sqrt(2) = A/1.414

x= 0.714 A

thus the kinetic energy and potential energy will be equal at x =0,714 A value as above

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments