Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.

Use Coupon: CART20 and get 20% off on all online Study Material

Total Price: Rs.

There are no items in this cart.
Continue Shopping

find the point where th kienatic and potential energy is equal in SHM?

find the point where th kienatic and potential energy is equal in SHM?

Grade:12th pass

1 Answers

25763 Points
2 years ago

A simple realization of the harmonic oscillator in classical mechanics is a particle which is acted upon by a restoring force proportional to its displacement from its equilibrium position. Considering motion in one dimension, this means


Such a force might originate from a spring which obeys Hooke’s law

The force constant k is a measure of the stiffness of the spring. The variable x is chosen equal to zero at the equilibrium position, The negative sign shows restoring force, always in the opposite sense to the displacement x.

F = m .{d^2 x / dx^2} = −kx

where m is the mass of the body attached to the spring, which is itself assumed massless. This leads to a differential equation of familiar form, although with different variables:

the solution of the differential equation is of the form

x = A sin wt where

w= sqrt(k/m) and A is maximum displacement called amplitude,

if at t=0 x=0

thus the velocity at any time t will be

dx/dt = A.w.cos(wt)

so the kinetic energy at time t

(1/2) m. vel^2 = (1/2) m. {A^2. w^2 Cos^2 (wt)}

The general relation between force and potential energy in a conservative system in one dimension is

F = −(dV / dx) i.e. the force is derived as negative rate of change of potential

Thus the potential energy of a harmonic oscillator is given by

V(x) = (1/2). k .x ^2

which has the shape of a parabola,turning points ±x(max)

where the total energy E equals the potential energy (1/2). k .x ^2 while the kinetic energy is momentarily zero.

In contrast, when the oscillator moves past x=0 the kinetic energy reaches its maximum value while the potential energy equals zero.

therefore the two forms of energy are being shared with total E constant.

Now let at any instant t the two energies are equal

K.E. = P.E.

so (1/2) m. {A^2. w^2 Cos^2 (wt)} = (1/2). k .x(t) ^2 = (1/2). k .( A sin wt )^2

Both are equal to (1/2) total Energy

so its possible if wt= pi/4 where sin and cos function will have same value.

at wt= pi/4 the displacement x will be

x= a sin(wt) = A. sin (pi/4) = A. (1/sqrt(2) = A/1.414

x= 0.714 A

thus the kinetic energy and potential energy will be equal at x =0,714 A value as above

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy


Get your questions answered by the expert for free