Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
Hi Ravi, Now can you please Explain through the use of diffraction How a laser beam Propagate? Thanks Hi Ravi, Now can you please Explain through the use of diffraction How a laser beam Propagate? Thanks
Hi Ravi,
Now can you please Explain through the use of diffraction How a laser beam Propagate?
Thanks
Hi Ronit, May be the following can be helpful for you, The way in which the profile of a laser beam changes as it propagates is determined by diffraction. The output mirror of the laser is an aperture, and the subsequent beam shape is determined by that aperture. Hence, the smaller the output beam, the quicker it diverges. Diode lasers have much greater divergence than He-Ne lasers for this reason. Paradoxically, it is possible to reduce the divergence of a laser beam by first expanding it with one convex lens, and then collimating it with a second convex lens whose focal point is coincident with that of the first lens. The resulting beam has a larger aperture, and hence a lower diverge
Hi Ronit,
May be the following can be helpful for you,
The way in which the profile of a laser beam changes as it propagates is determined by diffraction. The output mirror of the laser is an aperture, and the subsequent beam shape is determined by that aperture. Hence, the smaller the output beam, the quicker it diverges. Diode lasers have much greater divergence than He-Ne lasers for this reason.
Paradoxically, it is possible to reduce the divergence of a laser beam by first expanding it with one convex lens, and then collimating it with a second convex lens whose focal point is coincident with that of the first lens. The resulting beam has a larger aperture, and hence a lower diverge
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -