Can you please explain how the sound is transferred through our ears?

Can you please explain how the sound is transferred through our ears?


1 Answers

shashank Saxena
13 Points
13 years ago

The working of an ear

The decibel scale is used because it closely corresponds to how we perceive the loudness of sounds. The human ear is really quite an amazing detector of sound, and it's worth spending some time learning how it works.
The ear is split into three sections, the outer ear, the middle ear, and the inner ear. The outer ear acts much like a funnel, collecting the sound and transferring it inside the head down a passage that's about 3 cm long, ending at the ear drum.

The ear drum separates the outer ear from the middle ear, and, much like the skin on a drum, it is a thin membrane that vibrates in response to a sound wave. The middle ear is connected to the mouth via the eustachian tubes to ensure that the inside of the eardrum is maintained at atmospheric pressure. This is necessary for the drum to be able to respond to the small variations in pressure from atmospheric pressure that make up the sound wave.

In the middle ear are three small bones, called the hammer, anvil, and stirrup because of their shapes. These transfer the sound wave from the ear drum to the inner ear. Similar to a hydraulic lift, the pressure is transferred from a relatively large area (the eardrum) to a smaller area (the window to the inner ear). By Pascal's principle (see the section on fluids), the pressure is constant. The force is smaller at the small-area inner ear, but the work done at each end is equal, so the inner ear experiences a vibration with a much larger amplitude than that at the ear drum. The bones, in effect, act as an audio amplifier.

The eardrum and the window to the inner ear have different acoustic properties. If they were directly connected together some energy would be reflected back. The three bones in the middle ear are designed to transfer sound energy from the eardrum to the inner ear without any energy lost to reflections. The technical physics term for this is "impedance match": any time energy is transferred from one system to another without any reflected energy, the impedances are matched at the transfer this case, the bones provide the impedance matching. The bottom line is that they will amplify the sound level without losing any sound energy.

The inner ear contains a fluid-filled tube, the cochlea. The cochlea is coiled like a snail, is about 3 mm in diameter, and is divided along its length by the basilar membrane. It also contains a set of hair cells that convert the sound wave into electrical pulses; these are transferred along nerves to the brain, to be interpreted as sound. When a sound signal enters the inner ear, a small movement of the basilar membrane or the fluid in the cochlea results in the rubbing of another membrane across the hair cells. The relatively long hairs provide another level of amplification, in the sense that a small force applied at the ends is converted into a relatively large torque.

To summarize, then, the outer ear collects sound and transfers it to the middle ear; the middle ear amplifies the sound and passes it to the inner ear; and the inner ear converts the sound into electrical signals to be sent to the brain.
The range of human hearing is quite large, both in terms of sound intensity and sound frequency. Humans can hear sounds between about 20 Hz and 20000 Hz; music and speech typically covers the range from 100 Hz to 3000 Hz. The ear is most sensitive to sound of about 3000 Hz, as the following graph shows:


Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy


Get your questions answered by the expert for free