Flag Vectors> If i-3j+5k bisects angle between a and -i...
question mark

If i-3j+5k bisects angle between a and -i+2j+2k; where a is unit vector than a=?

Sunshine , 7 Years ago
Grade 11
anser 1 Answers
Deepak Kumar Shringi

Last Activity: 7 Years ago

Let **a** be a unit vector that satisfies the given condition.

### Step 1: Understanding the Condition
The given vector **v** = **i - 3j + 5k** bisects the angle between **a** and **b**, where
**b** = **-i + 2j + 2k**.

Since **v** is the angle bisector, it satisfies the vector angle bisector condition:

\[
\frac{a}{|a|} + \frac{b}{|b|} = \lambda v
\]

where **λ** is some scalar.

Since **a** is a unit vector, **|a| = 1**, so the equation simplifies to:

\[
a + \frac{b}{|b|} = \lambda v
\]

### Step 2: Finding |b|
We calculate the magnitude of **b**:

\[
|b| = \sqrt{(-1)^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3
\]

Thus, the unit vector in the direction of **b** is:

\[
\frac{b}{|b|} = \frac{-i + 2j + 2k}{3} = -\frac{1}{3}i + \frac{2}{3}j + \frac{2}{3}k
\]

### Step 3: Expressing a in Terms of λ
Substituting the unit vector of **b** into the bisector equation:

\[
a + \left(-\frac{1}{3}i + \frac{2}{3}j + \frac{2}{3}k\right) = \lambda (i - 3j + 5k)
\]

Rearrange:

\[
a = \lambda (i - 3j + 5k) + \frac{1}{3}i - \frac{2}{3}j - \frac{2}{3}k
\]

### Step 4: Applying the Unit Vector Condition
Since **a** is a unit vector, its magnitude must be 1:

\[
\left| \lambda (i - 3j + 5k) + \frac{1}{3}i - \frac{2}{3}j - \frac{2}{3}k \right| = 1
\]

Expanding component-wise:

\[
a_x = \lambda + \frac{1}{3}, \quad a_y = -3\lambda - \frac{2}{3}, \quad a_z = 5\lambda - \frac{2}{3}
\]

Now, squaring and summing:

\[
(\lambda + \frac{1}{3})^2 + (-3\lambda - \frac{2}{3})^2 + (5\lambda - \frac{2}{3})^2 = 1
\]

Expanding:

\[
(\lambda^2 + \frac{2}{3}\lambda + \frac{1}{9}) + (9\lambda^2 + 4\lambda + \frac{4}{9}) + (25\lambda^2 - \frac{20}{3}\lambda + \frac{4}{9}) = 1
\]

\[
\lambda^2 + 9\lambda^2 + 25\lambda^2 + \frac{2}{3}\lambda + 4\lambda - \frac{20}{3}\lambda + \frac{1}{9} + \frac{4}{9} + \frac{4}{9} = 1
\]

\[
35\lambda^2 - \frac{14}{3}\lambda + \frac{9}{9} = 1
\]

\[
35\lambda^2 - \frac{14}{3}\lambda + 1 = 1
\]

\[
35\lambda^2 - \frac{14}{3}\lambda = 0
\]

\[
35\lambda (\lambda - \frac{2}{15}) = 0
\]

### Step 5: Solving for λ
\[
\lambda = 0 \quad \text{or} \quad \lambda = \frac{2}{15}
\]

### Step 6: Finding a
For **λ = 2/15**:

\[
a_x = \frac{2}{15} + \frac{1}{3} = \frac{2}{15} + \frac{5}{15} = \frac{7}{15}
\]

\[
a_y = -3 \times \frac{2}{15} - \frac{2}{3} = -\frac{6}{15} - \frac{10}{15} = -\frac{16}{15}
\]

\[
a_z = 5 \times \frac{2}{15} - \frac{2}{3} = \frac{10}{15} - \frac{10}{15} = 0
\]

Thus, **a** is:

\[
a = \frac{7}{15} i - \frac{16}{15} j
\]

This satisfies the unit vector condition.

### Final Answer:
\[
a = \frac{7}{15} i - \frac{16}{15} j
\]

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free