#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-5470-145

+91 7353221155

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

# a fighter plane flying horizontally at an altitude of 1.5 km with speed 720km/hr passes directly overhead an antiaircraft gun.At what angle from the vertical should the gun be fired for the shell with muzzle speed 600m/s to hit the plane?

8 years ago

Height of the fighter plane = 1.5 km = 1500 m

Speed of the fighter plane, = 720 km/h = 200 m/s

Let θ be the angle with the vertical so that the shell hits the plane.

Muzzle velocity of the gun, u = 600 m/s

Time taken by the shell to hit the plane = t

Horizontal distance travelled by the shell = uxt

Distance travelled by the plane = vt

The shell hits the plane. Hence, these two distances must be equal.

uxt = vt

usinΘ = v

sinΘ = v/u

sinΘ = 200/600

= 1/3

Θ = sin-1(0.33)

Θ = 19.5 degrees

8 years ago

Height of the fighter plane = 1.5 km = 1500 m

Speed of the fighter plane, v = 720 km/h = 200 m/s

Let θ be the angle with the vertical so that the shell hits the plane. The situation is shown in the given figure. Muzzle velocity of the gun, u = 600 m/s

Time taken by the shell to hit the plane = t

Horizontal distance travelled by the shell = uxt

Distance travelled by the plane = vt

The shell hits the plane. Hence, these two distances must be equal.

uxt = vt In order to avoid being hit by the shell, the pilot must fly the plane at an altitude (H) higher than the maximum height achieved by the shell.  