Y RAJYALAKSHMI
Last Activity: 10 Years ago
Let cosa + i sina = x ; cosb + i sinb = y; cosc + i sinc = z
then 1/x = cosa – i sina ; 1/y = cosb – i sinb ; 1/z = cosc – i sinc
x + y + z = cosa + i sina + cosb + i sinb + cosc + i sinc = (cosa + cosb + cosc) + i (sina + sinb + sinc) = 0 (Since cosa + cosb + cosc = sina + sinb + sinc = 0)
(x + y + z)2 = 0
=> x2 + y2 + z2 = – 2(xy + yz + zx)
= – 2xyz ( 1/x + 1/y + 1/z)
= –2xyz ( cosa – i sina + cosb – i sinb + cosc – i sinc)
= – 2xyz [( cosa + cosb + cosc) – i(sina + sinb + sinc) ] = 0 (Since cosa + cosb + cosc = sina + sinb + sinc = 0)
So, x2 + y2 + z2 = 0
=> (cosa – i sina)2 + (cosb – i sinb)2 + (cosc – i sinc)2 = 0
=> cos2a – sin2a – 2i cosa sina + cos2b – sin2b – 2i cosb sinb + cos2c – sin2c – 2i cosc sinc = 0
=> (cos 2a + cos 2b + cos 2c) – i (sin 2a + sin 2b + sin 2c) = 0
=> (cos 2a + cos 2b + cos 2c) = (sin 2a + sin 2b + sin 2c) = 0