Flag Trigonometry> Sametion of a^3 cos (B-C) find the answer...
question mark

Sametion of a^3 cos (B-C) find the answer related to properties of triangle

Anusha , 6 Years ago
Grade 12th pass
anser 1 Answers
Arun

Last Activity: 6 Years ago

X = a³cos(B-C) + b³cos(C-A) +c³cos(A-B) 
 
From sine rule and 3A trig identity a³ = 8R³sin³(A) = 2R³(3sin(A)−sin(3A)) 
 
So X = 2R³ ∑( 3sin(A)−sin(3A) )cos(B−C) = R³Y where ∑ is over cycles 
 
2sin(A)cos(B−C) = sin(A+B−C) + sin(A−B+C) = sin(2C) + sin(2B) 
 
2sin(3A)cos(B−C) = sin(3A+B−C) + sin(3A−B+C) 
 
with similar expressions for B,C,A & C,A,B 
 
∴ Y = 3∑sin(2C) + 3∑sin(2B) − ∑sin(3A+B−C) − ∑sin(3A−B+C) 
 
∑sin(3A+B−C) + ∑sin(3A−B+C) = sin(3A+B−C) + sin(3B+C−A) + sin(3C+A−B) + 
……………………………………... .sin(3A−B+C) + sin(3B−C+A) + sin(3C−A+B) … (i) 
 
But (3A+B−C) + (3C−A+B) = 2(A+B+C) = 2π so sin(3A+B−C) + sin(3C−A+B) = 0 with similar for other pairs of terms in (i). So (i) is zero. 
 
∴ Y = 6∑sin(2A) = 24sin(A)sin(B)sin(C) (an easily proved identity for a triangle) 
 
Y = 24abc/(8R³) = 3abc/R³ → X = 3abc

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free