Flag Trigonometry> prove that, tan20degrees+2tan40degrees+4c...
question mark

prove that, tan20degrees+2tan40degrees+4cot80degrees=cot20degrees

Hasibul Islam , 7 Years ago
Grade 12th pass
anser 2 Answers
Jayesh Gondhalekar

Last Activity: 7 Years ago

From table: tan20=0.3639 tan40= 0.839 cot80=0.1763. & cot20=2.7474 LHS: tan20+2 tan40+ 4 cot80= 0.3639+2(0.839)+4(0.1763)= =0.3639+1.678+0.7052=2.747=cot20 (Final answer)

Soumendu Majumdar

Last Activity: 7 Years ago

Dear Student,
L.H.S= tan20^{\circ} + 2tan40^{\circ} + 4 cot80^{\circ}
tan20^{\circ} + 2tan40^{\circ} + 4 [(cot^240^{\circ}-1)/2cot40^{\circ}]   using cot 2A = (cot^2 A -1)/2cotA
tan20^{\circ} + (2 cot^2 40^{\circ} -2 +2tan40^{\circ}cot40^{\circ})/cot40^{\circ}
=tan20^{\circ} + 2 cot 40^{\circ}
tan20^{\circ} + 2 [(cot^2 20^{\circ} - 1)/2cot20^{\circ}]
=[(tan20^{\circ}cot20^{\circ} +cot^2 20^{\circ} - 1)/cot20^{\circ}]
=cot^2 20^{\circ}/cot20^{\circ}
cot20^{\circ} = R.H.S [Proved]
 
Hope it helps!
with regards,
Soumendu

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments