Saurabh Koranglekar
Last Activity: 5 Years ago
To solve the equation \((\sec \theta - \tan \theta) \div (\sec \theta + \tan \theta) = \frac{36}{49}\), we first need to understand the relationship between secant, tangent, and their respective trigonometric identities. Let's break this down step by step and then use the results to find \((\csc \theta - \sec \theta) \div (\csc \theta + \sec \theta)\).
Step 1: Express secant and tangent in terms of sine and cosine
Recall that:
- \(\sec \theta = \frac{1}{\cos \theta}\)
- \(\tan \theta = \frac{\sin \theta}{\cos \theta}\)
Substituting these definitions into the equation gives:
\((\frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta}) \div (\frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta})\)
Step 2: Simplifying the expression
This simplifies to:
\(\frac{(1 - \sin \theta)}{(1 + \sin \theta)}\)
Thus, we can write:
\(\frac{1 - \sin \theta}{1 + \sin \theta} = \frac{36}{49}\)
Step 3: Cross multiplying
To eliminate the fraction, we can cross-multiply:
Thus, we have:
49(1 - \sin \theta) = 36(1 + \sin \theta)
Step 4: Expanding and rearranging
Expanding both sides yields:
49 - 49\sin \theta = 36 + 36\sin \theta
Now, collect the \(\sin \theta\) terms on one side:
49 - 36 = 49\sin \theta + 36\sin \theta
Which simplifies to:
13 = 85\sin \theta
Solving for \(\sin \theta\), we find:
\(\sin \theta = \frac{13}{85}\)
Step 5: Finding cosecant and secant
Next, we need \(\csc \theta\) and \(\sec \theta\):
- \(\csc \theta = \frac{1}{\sin \theta} = \frac{85}{13}\)
- \(\sec \theta = \frac{1}{\cos \theta}\), and we can find \(\cos \theta\) using \(\sin^2 \theta + \cos^2 \theta = 1\):
Calculating \(\cos^2 \theta\):
\(\cos^2 \theta = 1 - \left(\frac{13}{85}\right)^2 = 1 - \frac{169}{7225} = \frac{7056}{7225}\)
So, \(\cos \theta = \frac{84}{85}\), thus:
\(\sec \theta = \frac{85}{84}\)
Step 6: Compute the final expression
Now, we want to find:
\((\csc \theta - \sec \theta) \div (\csc \theta + \sec \theta)\)
Substituting the values we found:
\((\frac{85}{13} - \frac{85}{84}) \div (\frac{85}{13} + \frac{85}{84})\)
Step 7: Simplifying the numerator and denominator
Finding a common denominator for the numerator:
\(\frac{85 \cdot 84}{1092} - \frac{85 \cdot 13}{1092} = \frac{85(84 - 13)}{1092} = \frac{85 \cdot 71}{1092}\)
For the denominator:
\(\frac{85 \cdot 84}{1092} + \frac{85 \cdot 13}{1092} = \frac{85(84 + 13)}{1092} = \frac{85 \cdot 97}{1092}\)
Step 8: Final simplification
Now, putting it all together:
\(\frac{85 \cdot 71 / 1092}{85 \cdot 97 / 1092} = \frac{71}{97}\)
Thus, the final result is:
\((\csc \theta - \sec \theta) \div (\csc \theta + \sec \theta) = \frac{71}{97}\)