 # 1+tanA=√2 sin(45+A)/cosA=√2 cos(45-A)/cosA how can 1+tanA be written as above.???show the derivations of both 1+tanA=√2 sin(45+A)/cosA and 1+tan A =√2 cos(45-A)/cosAneed it fast.and derivation is really important.

11 years ago

Dear student,

Its derivation is very simple...

1+tanA=1+sinA/cosA=sinA+cosA/cosA

multiply and divide by root 2

we get

√2 sin(45+A)/cosA=√2 cos(45-A)/cosA

All the best.

Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.

Sagar Singh

B.Tech, IIT Delhi

sagarsingh24.iitd@gmail.com

11 years ago

1+ tanA = (sinA + cosA)/cosA                           (multiply divide  by 21/2)

1+ tanA = 21/2[sinA(1/21/2) + cosA(1/21/2) ]/cosA                  .................1

sinpi/4 = cospi/4  =   1/21/2

now , eq  1 can be rewritten as

1+tanA = 21/2 [sinAsinpi/4+cosAcospi/4] /cosA     or  21/2[sinAcospi/4+cosAsinpi/4]/cosA

now we have , sinacosb+cosasinb=sina+b    &      cosacosb+sinasinb=cosa-b

using these

1+tanA = 21/2[cos(pi/4-A)]/cosA = 21/2[sin(pi/4+A)]/cosA

(pi/4 =45)

hence proved