Flag Trigonometry> 2013 ∑ tan(x/2^(n)).sec(x/2^(n-1)) = tan(...
question mark

2013∑tan(x/2^(n)).sec(x/2^(n-1)) = tan(x/2^(a)) - tan(x/2^(b))n=1

vasu dixit , 8 Years ago
Grade 11
anser 1 Answers
jagdish singh singh

Last Activity: 8 Years ago

\hspace{-0.5 cm }\sum^{2013}_{n=1}\tan\left(\frac{x}{2^n}\right)\cdot \sec\left(\frac{x}{2^{n-1}}\right)=\sum^{2013}_{n=1}\frac{\sin (\frac{x}{2^n})}{\cos \left(\frac{x}{2^n}\right)\cdot \cos \left(\frac{x}{2^{n-1}}\right)}\\\\\\ \sum^{2013}_{n=1}\frac{\sin \left[\frac{x}{2^{n-1}}-\frac{x}{2^n}\right]}{\cos \left(\frac{x}{2^n}\right)\cdot \cos \left(\frac{x}{2^{n-1}}\right)} = \sum^{2013}_{n=1}\left[\tan \left(\frac{x}{2^{n-1}}\right)-\tan\left(\frac{x}{2^n}\right)\right]$\\\\\\ Now expanding Summation, We get Sum equal to\\\\$=\tan \left(\frac{x}{2^{0}}\right)-\tan \left(\frac{x}{2^{2013}}\right)$

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...