Flag Thermal Physics> A Carnot engine works between temperature...
question mark

A Carnot engine works between temperature T1 and T2 . it drives a Carnot refrigerator that works between two different temperature T3 and T4 (see Fig. 24-21). Find the ratio |Q3|/|Q1| in terms of the four temperature.
src=

Shane Macguire , 9 Years ago
Grade upto college level
anser 4 Answers
Deepak Patra

Last Activity: 9 Years ago

233-2196_1.PNG
233-2048_1.PNG

Tummala Vamshi

Last Activity: 4 Years ago

A carnot engine that works between temperatures T1=400K and T2=150K and drives a carnot refrigerator that works between temperatures T3= 325K and T4=225K find the ratio between Q3/Q2

Anomous

Last Activity: 3 Years ago

 

The efficiency of the engine is defined by ε=W/Q1 and is shown in the text to be
ε=T1T1T2Q1W=T1T1T2
The coefficient of performance of the refrigerator is defined by K=Q4/W and is shown in the text to be
K=T3T4T4WQ4=T3T4T4
Now Q4=Q3W, so
(Q3W)/W=T4/(T3T4)
The work done by the engine is used to drive the refrigerator, so W is the same for the two. Solve the engine equation for W and substitute the resulting expression into the refrigerator equation. 
The engine equation yields W=(T1T2)Q1/T1 and the substitution yields
T3T4T4=WQ31=Q1(T1T2)Q3T11
Solving for Q3/Q1, 
we obtain
Q1Q3=(T3T4T4+1)(T1T1T2)=(T3T4T3)(T1T1T2)=1(T4/T3)1(T2/T1)
With T1=400K,T2=150K,T3=325K, and T4=225K, the ratio becomes 
Q3/Q1=2.03

Anomous

Last Activity: 3 Years ago

The efficiency of the engine is defined by ε=W/Q 
1
  and is shown in the text to be
ε= 
1
 
1
 −T 
2
 
 ⇒ 
1
 
W
 = 
1
 
1
 −T 
2
 
 
The coefficient of performance of the refrigerator is defined by K=Q 
4
 /W and is shown in the text to be
K= 
3
 −T 
4
 
4
 
 ⇒ 
W
4
 
 = 
3
 −T 
4
 
4
 
 
Now Q 
4
 =Q 
3
 −W, so
(Q 
3
 −W)/W=T 
4
 /(T 
3
 −T 
4
 )
The work done by the engine is used to drive the refrigerator, so W is the same for the two. Solve the engine equation for W and substitute the resulting expression into the refrigerator equation. 
The engine equation yields W=(T 
1
 −T 
2
 )Q 
1
 /T 
1
  and the substitution yields
3
 −T 
4
 
4
 
 = 
W
3
 
 −1= 
1
 (T 
1
 −T 
2
 )
3
 T 
1
 
 −1
Solving for Q 
3
 /Q 
1
 , 
we obtain
1
 
3
 
 =( 
3
 −T 
4
 
4
 
 +1)( 
1
 
1
 −T 
2
 
 )=( 
3
 −T 
4
 
3
 
 )( 
1
 
1
 −T 
2
 
 )= 
1−(T 
4
 /T 
3
 )
1−(T 
2
 /T 
1
 )
 
With T 
1
 =400K,T 
2
 =150K,T 
3
 =325K, and T 
4
 =225K, the ratio becomes 
3
 /Q 
1
 =2.03The efficiency of the engine is defined by ε=W/Q 
1
  and is shown in the text to be
ε= 
1
 
1
 −T 
2
 
 ⇒ 
1
 
W
 = 
1
 
1
 −T 
2
 
 
The coefficient of performance of the refrigerator is defined by K=Q 
4
 /W and is shown in the text to be
K= 
3
 −T 
4
 
4
 
 ⇒ 
W
4
 
 = 
3
 −T 
4
 
4
 
 
Now Q 
4
 =Q 
3
 −W, so
(Q 
3
 −W)/W=T 
4
 /(T 
3
 −T 
4
 )
The work done by the engine is used to drive the refrigerator, so W is the same for the two. Solve the engine equation for W and substitute the resulting expression into the refrigerator equation. 
The engine equation yields W=(T 
1
 −T 
2
 )Q 
1
 /T 
1
  and the substitution yields
3
 −T 
4
 
4
 
 = 
W
3
 
 −1= 
1
 (T 
1
 −T 
2
 )
3
 T 
1
 
 −1
Solving for Q 
3
 /Q 
1
 , 
we obtain
1
 
3
 
 =( 
3
 −T 
4
 
4
 
 +1)( 
1
 
1
 −T 
2
 
 )=( 
3
 −T 
4
 
3
 
 )( 
1
 
1
 −T 
2
 
 )= 
1−(T 
4
 /T 
3
 )
1−(T 
2
 /T 
1
 )
 
With T 
1
 =400K,T 
2
 =150K,T 
3
 =325K, and T 
4
 =225K, the ratio becomes 
3
 /Q 
1
 =2.03The efficiency of the engine is defined by ε=W/Q 
1
  and is shown in the text to be
ε= 
1
 
1
 −T 
2
 
 ⇒ 
1
 
W
 = 
1
 
1
 −T 
2
 
 
The coefficient of performance of the refrigerator is defined by K=Q 
4
 /W and is shown in the text to be
K= 
3
 −T 
4
 
4
 
 ⇒ 
W
4
 
 = 
3
 −T 
4
 
4
 
 
Now Q 
4
 =Q 
3
 −W, so
(Q 
3
 −W)/W=T 
4
 /(T 
3
 −T 
4
 )
The work done by the engine is used to drive the refrigerator, so W is the same for the two. Solve the engine equation for W and substitute the resulting expression into the refrigerator equation. 
The engine equation yields W=(T 
1
 −T 
2
 )Q 
1
 /T 
1
  and the substitution yields
3
 −T 
4
 
4
 
 = 
W
3
 
 −1= 
1
 (T 
1
 −T 
2
 )
3
 T 
1
 
 −1
Solving for Q 
3
 /Q 
1
 , 
we obtain
1
 
3
 
 =( 
3
 −T 
4
 
4
 
 +1)( 
1
 
1
 −T 
2
 
 )=( 
3
 −T 
4
 
3
 
 )( 
1
 
1
 −T 
2
 
 )= 
1−(T 
4
 /T 
3
 )
1−(T 
2
 /T 
1
 )
 
With T 
1
 =400K,T 
2
 =150K,T 
3
 =325K, and T 
4
 =225K, the ratio becomes 
3
 /Q 
1
 =2.03

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free