Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

[Fe(CN)6]4– and [Fe(H2O)6]2+ are of different colours in dilute solutions. Why?

[Fe(CN)6]4– and [Fe(H2O)6]2+ are of different colours in dilute solutions. Why?

Grade:9

2 Answers

Sunil Kumar FP
askIITians Faculty 183 Points
6 years ago
The colour of a particular coordination compound depends on the magnitude of the crystal-field splitting energy, Δ. This CFSE in turn depends on the nature of the ligand. In case of [Fe(CN)6]4− and [Fe(H2O)6]2+, the colour differs because there is a difference in the CFSE. Now, CN− is a strong field ligand having a higher CFSE value as compared to the CFSE value of water. This means that the absorption of energy for the intra d-d transition also differs. Hence, the transmitted colour also differs.
kunal kashyap
21 Points
4 years ago
The colour of a particular coordination compound depends on the magnitude of the crystal-field splitting energy, Δ. This CFSE in turn depends on the nature of the ligand. In case of [Fe(CN)6]4- and [Fe(H2O)6]2+, the colour differs because there is a difference in the CFSE. Now, CN- is a strong field ligand having a higher CFSE value as compared to the CFSE value of water. This means that the absorption of energy for the intra d-d transition also differs. Hence, the transmitted colour also differs.

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free