Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
`        Can anyone please explain Joule-Thomson effect?I would also like to know about inversion temperature and Joule-Thomson coefficient.`
one year ago

Arun
22988 Points
```							The joule-Thomson effect is the change in fluid’s temperature as it flows from a higher pressure region to a lower pressure.According to thermodynamic principle, the Joule-kelvin effect can be explained best by considering a separate gas packet placed in the opposite flow of direction for restriction. For the gas packet to pass through, the upstream gas needs to perform some work to push through the packet. The work equals to the volume of the packet multiplied by the times of upstream pressure.W​1​​=V​packet​1​​​​×P​1​​As the packet goes through the restriction, it has to make some room by displacing a considerable amount of the downstream gas. It includes performing the work which equals to the product of packet volume and downstream pressure.W​2​​=V​packet​2​​​​×P​2​​Due to different effects of compressibility, the work performed upstream is not equal to the amount of work done downstream for real gases. Since depressuring is viewed as an adiabatic process, it reveals that any gas does not exchange work or heat by its surroundings, any change in internal energy has to follow the first law of thermodynamics.U​2​​−U​1​​=W​1​​−W​2​​Gas molecules are subjected to repulsive and attractive forces, (Van der Waals forces) as they are in random motion. When the gas pressure is lowered, i.e, the average distance between the molecules increases, the attractive forces become dominant for many gases at ambient temperature which results in an elevation in potential energy.Most of the real gases need more work downstream at ambient temperature, due to the effects of compressibility.P​1​​×V​1​​P​2​​×V​2​​The indicates that the internal energy decreases when the gas passes through the restriction.It can be generalised that for many real gases, the temperature decreases during a reduction in pressure, but not true for every gas and condition. Depressureing is an isenthalpic process which reveals that enthalpy doesn’t change. The temperature can either decrease or increase for any gas based on how the internal energy changes to maintain the enthalpy constant.
```
one year ago
Think You Can Provide A Better Answer ?

Other Related Questions on Physical Chemistry

View all Questions »

Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution

Course Features

• 141 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions

Post Question