# What is black hole? Write an expression for radius (Schwarzschild radius) of event horizon?

kanakaraj
36 Points
10 years ago
The relation between properties of mass and their associated physical constants. Every massive object is believed to exhibit all five properties. However, due to extremely large or extremely small constants, it is generally impossible to verify more than two or three properties for any object. The Schwarzschild radius (rs) represents the ability of mass to cause curvature in space and time. The standard gravitational parameter (µ) represents the ability of a massive body to exert Newtonian gravitational forces on other bodies. Inertial mass (m) represents the Newtonian response of mass to forces. Rest energy (E0) represents the ability of mass to be converted into other forms of energy. The Compton wavelength (?) represents the quantum response of mass to local geometry. The Schwarzschild radius (sometimes historically referred to as the gravitational radius) is the radius of a sphere such that, if all the mass of an object is compressed within that sphere, the escape speed from the surface of the sphere would equal the speed of light. An example of an object smaller than its Schwarzschild radius is a black hole. Once a stellar remnant collapses below this radius, light cannot escape and the object is no longer directly visible.[1] It is a characteristic radius associated with every quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild who calculated this exact solution for the theory of general relativity in 1916.
sra1 kumar
37 Points
10 years ago
A black hole is defined as a region of spacetime from which gravity prevents anything, including light, from escaping.[1] The theory of general relativity predicts that a sufficiently compact mass will deform spacetime to form a black hole.[2] Around a black hole, there is a mathematically defined surface called an event horizon that marks the point of no return. The hole is called "black" because it absorbs all the light that hits the horizon, reflecting nothing, just like a perfect black body in thermodynamics.[3][4] Quantum field theory in curved spacetime predicts that event horizons emit radiation like a black body with a finite temperature. This temperature is inversely proportional to the mass of the black hole, making it difficult to observe this radiation for black holes of stellar mass or greater.