Last Activity: 7 Years ago
Last Activity: 5 Years ago
Last Activity: 4 Years ago
Dear Student,
Please find below the solution to your problem.
Denote by
α : the coefficient of linear expansion
β : the coefficient of surface expansion
γ : the coefficient of volumetric expansion
Then a length increases as
L → L ( 1 + α ΔT)
But this means that for isotropic (same in every direction) expansion a surface (length x length) increases as
A → A ( 1 + α ΔT)( 1 + α ΔT) ≈ A (1 +2 α ΔT)
where we have neglected the (usually very small) square term (α ΔT)² .
Comparing with the (definition of β) expression
A → ( 1 + βΔT) , we see the relation
β = 2α .
Likewise
V → V ( 1 + γ ΔT) from the definition of volumetric expansion coefficient.
But also we can approximate (volume = length x length x length)
V → V ( 1 + α ΔT)³ ≈ V ( 1 + 3 α ΔT) , neglecting higher powers of α ΔT.
Hence
γ = 3 α
Thanks and Regards
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 2 Years ago