Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
An idealized algebraic relation between pressure, velocity, and elevation for flow of an inviscid fluid. Its most commonly used form is for steady flow of an incompressible fluid, and is given by the
equation below, where p is pressure, ? is fluid density (assumed constant), V is flow velocity, g is the acceleration of gravity and z is the elevation of the fluid particle. The relation applies along any particular streamline of the flow. The constant may vary across streamlines unless it can be further shown that the fluid has zero local angular velocity.
The above equation may be extended to steady compressible flow (where changes in ? are important) by adding the internal energy per unit mass, e, to the left-hand side.
The equation is limited to inviscid flows with no heat transfer, shaft work, or shear work. Although no real fluid truly meets these conditions, the relation is quite accurate in free-flow or “core” regions away from solid boundaries or wavy interfaces, especially for gases and light liquids. Thus Bernoulli's theorem is commonly used to analyze flow outside the boundary layer, flow in supersonic nozzles, flow over airfoils, and many other practical problems.
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Win Gift vouchers upto Rs 500/-
Register Yourself for a FREE Demo Class by Top IITians & Medical Experts Today !