# ​A POINT MOVES IN A STRAIGHT LINE SO THAT ITS DISPLACEMENT ‘x’( in meter) AT TIME ‘t’(in seconds) IS GIVEN BY -‘ x2 = t2 + 1. ITS ACCELERATION IN m/sec2, at time ‘t’ is- 1/x3 ​1/x – 1/x2 -1/x2 -( t2/x3)

VISHESH DHARAIYA
17 Points
9 years ago
x2=t2+1
taking its differentiation,
2x*(dx/dt)=2t
x*(dx/dt)=t
again taking differentiation for acceleration,
x*(d2x/dt2) + (dx/dt)2 = 1
x*(d2x/dt2) = 1 – (dx/dt)2
x*(d2x/dt2) = 1 – (t/x)2                  (because x*(dx/dt)=t)
(d2x/dt2) = (1 – (t/x)2)/x
(d2x/dt2) = 1/x – t2/x3

put t2 = x2 -1
(d2x/dt2) = 1/x3

Bharat Makkar
34 Points
9 years ago
thanks!!!!
Pooja
15 Points
4 years ago

x2=t2+1
taking its differentiation,
2x*(dx/dt)=2t
x*(dx/dt)=t
again taking differentiation for acceleration,
x*(d2x/dt2) + (dx/dt)2 = 1
x*(d2x/dt2) = 1 – (dx/dt)2
x*(d2x/dt2) = 1 – (t/x)2                  (because x*(dx/dt)=t)
(d2x/dt2) = (1 – (t/x)2)/x
(d2x/dt2) = 1/x – t2/x3

put t2 = x2 -1
(d2x/dt2) = 1/x3

.....
ankit singh
askIITians Faculty 614 Points
3 years ago
x2=t2+1
taking its differentiation,
2x*(dx/dt)=2t
x*(dx/dt)=t
again taking differentiation for acceleration,
x*(d2x/dt2) + (dx/dt)2 = 1
x*(d2x/dt2) = 1 – (dx/dt)2
x*(d2x/dt2) = 1 – (t/x)2                  (because x*(dx/dt)=t)
(d2x/dt2) = (1 – (t/x)2)/x
(d2x/dt2) = 1/x – t2/x3

put t2 = x2 -1
(d2x/dt2) = 1/x3