himanshu porwal
Last Activity: 11 Years ago
Shot A - The one which was launched at an angle. Shot B - The one which was launched horizontally.
This is the first point which you need to think about. Which one of the two was launched first? Think about it, they have to collide. A has to cover the same horizontal displacement as B, but with a lesser horizontal velocity as launched at an angle.
If they collide, it just means that they are at the same position at the same instant of time. The two projectiles start from the same point, which means, in order to collide - their displacements must be same at a particular time instant.
For horizontal displacement, we have [Hor. velocity of Particle 1] x [Time till collision] = [Hor. Vel. of particle 2] x[Time till collision] eqn.(1) .
The horizontal motion of projectiles is uniform.
- All we have to do now is to substitute the values. Note that the time till collision for the two particles is not the same! If for the second particle it is T then for the first particle, it is T+t where t is the time interval between the firings.
Sx = Vxa x (T+t) = VxB x (T) Vxa=velocity of A horizontally,Vxb=velocity of B horizontally
Sy = VyA x (T+t) - (0.5)(g)(T+t)^2 = VyB x (T) - (0.5)(g)(T)^2.
This equation gives us T=t, after substituting the two velocities.
Substituting T=t from the first equation and solving, we get t=1 second interval between the firings.
For the second part, we require horizontal and vertical displacements. Go back to the above equations, plug in t=1/T=1. We get Sx = 5(3)^0.5 and Sy = -5 m
The displacemtent is the final-initial coordinate, so X = 5root3 m, Y = -5 + 10 = 5 m. [Launched from (0,10),]