 # IF WE ARE GIVEN WITH TWO OR MORE DISPLACEMENT EQUATIONS OF   S.H.M OF FORMy=Asin(wt+kx+phase angle)THEN HOW TO FIND RESULTANT AMPLITUDE,PHASE ANGLE Badiuddin askIITians.ismu Expert
148 Points
12 years ago

Dear Aman

let

y1=A1sin(wt+kx)

y2=A2sin(wt+kx+Φ)

y=y1 +y2

=A1sin(wt+kx)  +  A2sin(wt+kx+Φ)

=A1sin(wt+kx )  +A2sin(wt+kx)cos(Φ) +A2cos(wt+kx)sin(Φ)

=(A1 +A2 cosΦ  )sin(wt+kx ) +A2cos(wt+kx)sin(Φ)

let  (A1 +A2 cosΦ  ) =A cosδ

and A2 sinΦ  =Asinδ

so y= A cosδ sin(wt+kx ) +Asinδcos(wt+kx)

=Asin(wt+kx+δ )

here A is resultant magnitude and  δ is phase angle

A=(A12 +A22 +2A1A2cosδ)1/2

tanδ =A2sinΦ/(A1 +A2cosΦ)

Please feel free to post as many doubts on our discussion forum as you can.
If you find any question Difficult to understand - post it here and we will get you the answer and detailed solution very quickly.

All the best.

Regards,

8 years ago

Dear Aman

let

y1=A1sin(wt+kx)

y2=A2sin(wt+kx+Φ)

y=y1 +y2

=A1sin(wt+kx)  +  A2sin(wt+kx+Φ)

=A1sin(wt+kx )  +A2sin(wt+kx)cos(Φ) +A2cos(wt+kx)sin(Φ)

=(A1 +A2 cosΦ  )sin(wt+kx ) +A2cos(wt+kx)sin(Φ)

let  (A1 +A2 cosΦ  ) =A cosδ i don''t understand why??

so y= A cosδ  sin(wt+kx ) +Asinδcos(wt+kx)

=Asin(wt+kx+δ )

here A is resultant magnitude and  δ is phase angle

A=(A12 +A22 +2A1A2cosδ)1/2

tanδ =A2sinΦ/(A1 +A2cosΦ)