Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

rotational motion theory

rotational motion theory

Grade:11

1 Answers

Komal
askIITians Faculty 747 Points
6 years ago
Rotational motion

Themotionofarigidbodywhichtakesplaceinsuchawaythatallofitsparticlesmoveincirclesaboutanaxiswithacommonangularvelocity;also,therotationofaparticleaboutafixedpointinspace.Rotationalmotionisillustratedby thefixedspeedofrotationoftheEarthaboutitsaxis; thevaryingspeedofrotationoftheflywheelofasewingmachine;therotationofasatelliteaboutaplanet; themotionofanioninacyclotron;and themotionofapendulum.Circularmotionisarotationalmotioninwhicheachparticleoftherotatingbodymovesinacircularpathaboutanaxis.Suchmotionisexhibitedbythefirstandsecondexamples.ForinformationconcerningtheotherexamplesSeeHarmonic motion,Particle accelerator,Pendulum

Thespeedofrotation,orangularvelocity,remainsconstantinuniformcircularmotion.Inthiscase,theangulardisplacementΘexperiencedbytheparticleorrotatingbodyinatimetisΘ=ωt,whereωistheconstantangularvelocity.

Aspecialcaseofcircularmotionoccurswhentherotatingbodymoveswithconstantangularacceleration.Ifabodyismovinginacirclewithanangularaccelerationofαradians/s2,andifatacertaininstantithasanangularvelocityω0,thenatatimetsecondslater,theangularvelocitymaybeexpressedasω=ω0+αt,andtheangulardisplacementasΘ=ω0t+½αt2.SeeAcceleration,Velocity

ArotatingbodypossesseskineticenergyofrotationwhichmaybeexpressedasTrot= ½Iω2,whereωisthemagnitudeoftheangularvelocityoftherotatingbodyandIisthemomentofinertia,whichisameasureoftheoppositionofthebodytoangularacceleration.Themomentofinertiaofabodydependsonthemassofabodyandthedistributionofthemassrelativetotheaxisofrotation.Forexample,themomentofinertiaofasolidcylinderofmassMandradiusRaboutitsaxisofsymmetryis½MR2.

TheactionofatorqueListoproduceanangularaccelerationαaccordingtotheequationbelow,whereIω,theproductofmomentofinertiaandangularvelocity,iscalledtheangularmomentumoftherotatingbody.ThisequationpointsoutthattheangularmomentumIωofarotatingbody,andhenceitsangularvelocityω,remainsconstantunlesstherotatingbodyisacteduponbyatorque.BothLandIωmayberepresentedbyvectors.

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free