Flag Mechanics> Kinematics...
question mark

A person moves 30 m north and then 20 m towards east and then finally 30 √2 m in south - west direction. Find the dispalcement of the particle from origin.

Sanchit Gupta , 14 Years ago
Grade 12
anser 16 Answers
Vikas TU

Last Activity: 14 Years ago

zero

Ritvik Gautam

Last Activity: 14 Years ago

The person goes 30 m in north, and then 20 m in east and then 30√2 m in south west. Now, if we draw this diagram on a paper, then it would form a right-angled triangle kind of thing. So, the final position would lie on the hypotenuse of the triangle. Now, studying the diagram a more, we get,

length of hypotenuse = root(302 + 202 ) = 10√13 m

net displacement vector = 10√13 - 30√2

==> 42-36.6

==>5.4 m

Erisha sayed

Last Activity: 7 Years ago

Let`s draw the figure. Start from A to is 30 m and move east is 20 m now name the point as C. Therefore we get a triangle ABC but AC should be extended now we need to find AD which is CD -AC find AC by pgt and subtract 30 root and 10root13 the answer will be 6.4

somi teez

Last Activity: 7 Years ago

WHEN he starts from 30 m north then 20 m east then we can say that resultant displacement is sqrt(30^2+20^2)=10 sqrt(13) m
by addition of triagle vector.
he then finally moves 30 √2 m  in south - west  
so, displacement=final position-initial position
                        =30 √2 m  in south - west  - 10 √13 in south west
                       =42.43 m -36.05 m
                       =6.38 m

GuRI

Last Activity: 7 Years ago

When he walks 30m north, vector obtained is 30j^Further When he walks 20m east, vector obtained is 20i^ Further he walks 30√2 south west, which cannot be written either along x-axis or y-axis so we take components of this movement along x-axis and y-axis *along x-axis = 30√2*-cos45°= -30i^*along Y-axis = 30√2*-sin45°=-30j^Now net movement, 30j^+20i^-30j^-30i^ = -10i^ This shows the displacement of 10m towards west from origin

Teju

Last Activity: 7 Years ago

10 m towards westX displacement​ = 30√2 cos 45° = 30√2×1÷√2 =30Net displacement = 30-20=10mSo the displacement is 10 m towards west direction

Stonyarcade

Last Activity: 7 Years ago

Using vector30m North i.e +30j 20m east i.e +20i30√2 south west i.e (-30i)+(-30j)Therefore net displacement=30j+20i-30i-30j= -10i i.e 10m towards West

Uttam kumar

Last Activity: 7 Years ago

Here we have to find a vector value, so we have to solve the question as vector form..Now, here 1st man walks towards north so it is 30 j^ and then 20i^ and finally 30✓2 towards South-west which is = -30✓2cos thita + (-30✓2 sin thita)= -30i^ - 30j^.So we have-30j^ -30j^ + 20i^ - 30i^ = - 10i^.So it is 10m towards west..

Harshit Panwar

Last Activity: 7 Years ago

√(302+202)=10√13
So, 30√2-10√13=6.37m 
Hope it helps you

moheen

Last Activity: 7 Years ago

Apply phythagorean theorem;for 30m and 20m..you will get the dispalement 10*square root of 13.....then subract 30*square root of 2....and 10*square root of 13....the final answer is 6.4(approximately)...

Siddharth thakkar

Last Activity: 7 Years ago

First of all draw the figure of this que .so that you can see simply right angle tringle .then use thereom of Pythagoras.like this.....(20)1+(√2)²=(ac)1There for your answer is ...20√2m

sagar kumar

Last Activity: 7 Years ago

 
Here we have to find a vector value, so we have to solve the question as vector form..Now, here 1st man walks towards north so it is 30 j^ and then 20i^ and finally 30✓2 towards South-west which is = -30✓2cos thita + (-30✓2 sin thita)= -30i^ - 30j^.So we have-30j^ -30j^ + 20i^ - 30i^ = - 10i^.So it is 10m towards west..

Ankit guha

Last Activity: 7 Years ago

AB= 30 MBC= 20MCD=30√2MSO NOW BREAK THE CD IN HORIZONTAL AND VERTICAL COMPONENTS SO vertical COMPONENT CANCELS AB AND NET HORIZONTAL DISPLACEMENT IS 30-20 i.e. 10 M towards west direction

Divyanshi

Last Activity: 6 Years ago

Do it with the help of a rectangle diagram then find x by ptm. It will be 10mtowards west and it`s the correct answer.

Dnyandeo

Last Activity: 6 Years ago

First the man go in north direction 30m and than towards east direction 20m and than in southwest direction 30 root 2 than the right angle triangle is formed so, underoot 30x30 +20×20-30root2 appox answer is> 5.5 in west direction
 

Rishi Sharma

Last Activity: 4 Years ago

Dear Student,
Please find below the solution to your problem.

30m North20m East
and the 30√2​ SW can be rewritten as 30m in south and 30m in West because south and west being at 90 degree result
in √(30)^2 + (30)^2 ​= 30√2​
so at last we have following data that in south XS​=30m+north =30m+(−30m)=0,
negative becasue north is opposite to south.
and in West we have XW​=30m+east=30m+(−20m)=10m
so the displacement is 10m due west

Thanks and Regards

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...