Flag Magnetism> square-loop...
question mark

Show that the magnetic field at a point on the axis of a square loop( radius: a; at a distance x from the centre of the loop) is (4μoia2)/ π(4x2+a2) (4x2+2a2)1/2

π is pi.

Pranjal K , 11 Years ago
Grade upto college level
anser 1 Answers
Saurabh Singh

Last Activity: 11 Years ago

Start with the Biot-Savart law for linear currents:

\displaystyle  \mathbf{B}\left(\mathbf{r}\right)=\frac{\mu_{0}I}{4\pi}\int\frac{d\mathbf{l}^{\prime}\times\left(\mathbf{r}-\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|^{3}}

Now consider the edge that extends from{y=-w/2}to{y=+w/2}at{x=+w/2}. Along this edge we have

\displaystyle   \mathbf{r}-\mathbf{r}' \displaystyle  = \displaystyle  -x^{\prime}\hat{\mathbf{x}}-y^{\prime}\hat{\mathbf{y}}+z\hat{\mathbf{z}}
\displaystyle  \displaystyle  = \displaystyle  -\frac{w}{2}\hat{\mathbf{x}}-y^{\prime}\hat{\mathbf{y}}+z\hat{\mathbf{z}}
\displaystyle  d\mathbf{l}^{\prime} \displaystyle  = \displaystyle  dy^{\prime}\hat{\mathbf{y}}
\displaystyle  d\mathbf{l}^{\prime}\times\left(\mathbf{r}-\mathbf{r}'\right) \displaystyle  = \displaystyle  \left(z\hat{\mathbf{x}}+\frac{w}{2}\hat{\mathbf{z}}\right)dy^{\prime}

The integral is then

\displaystyle   \mathbf{B}_{1} \displaystyle  = \displaystyle  \frac{\mu_{0}I}{4\pi}\left(z\hat{\mathbf{x}}+\frac{w}{2}\hat{\mathbf{z}}\right)\int_{-w/2}^{w/2}\frac{dy^{\prime}}{\left(\frac{w^{2}}{4}+y^{\prime2}+z^{2}\right)^{3/2}}
\displaystyle  \displaystyle  = \displaystyle  \frac{\mu_{0}I}{4\pi}\left(z\hat{\mathbf{x}}+\frac{w}{2}\hat{\mathbf{z}}\right)\frac{8w}{\sqrt{2w^{2}+4z^{2}}\left(w^{2}+4z^{2}\right)}

By symmetry, the opposite edge at{x=-w/2}will contribute the same{z}component and the opposite{x}component. Similarly, the two edges at{y=\pm w/2}will contribute two more{z}components with the{y}components cancelling. Thus the total field is

\displaystyle   \mathbf{B} \displaystyle  = \displaystyle  4\frac{\mu_{0}I}{4\pi}\frac{w}{2}\frac{8w}{\sqrt{2w^{2}+4z^{2}}\left(w^{2}+4z^{2}\right)}\hat{\mathbf{z}}
\displaystyle  \displaystyle  = \displaystyle  \frac{4w^{2}\mu_{0}I}{\pi\sqrt{2w^{2}+4z^{2}}\left(w^{2}+4z^{2}\right)}\hat{\mathbf{z}}

Reference: Griffiths, David J. (2007) Introduction to Electrodynamics, 3rd Edition; Prentice Hall – Problem 5.37.

Thanks & Regards

Saurabh Singh,

askIITians Faculty

B.Tech.

IIT Kanpur

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free