Eshan
Last Activity: 6 Years ago
To solve this, we apply the **Biot–Savart Law**, which gives the magnetic field **d𝐁** due to a small current element:
Biot–Savart Law:
d𝐁 = (μ₀ / 4π) × (I d𝐥 × 𝐫̂) / r²
- I: current
- d𝐥: vector length of current element
- 𝐫: position vector from the current element to the field point
- r: magnitude of 𝐫
- 𝐫̂: unit vector in direction of 𝐫
Case 1: Point at (0, d, 0)
Let’s define:
- Current element d𝐥 = dx î (since wire lies along x-axis)
- Position vector 𝐫 = 𝐫P – 𝐫source = (0, d, 0) – (0, 0, 0) = d ĵ
Now compute d𝐥 × 𝐫:
d𝐥 × 𝐫 = dx î × d ĵ = dx·d (î × ĵ) = dx·d k̂
So the magnetic field at (0, d, 0):
d𝐁 = (μ₀ / 4π) × (I dx·d k̂) / d² = (μ₀ I dx) / (4π d) k̂
Result:
Magnitude: (μ₀ I dx) / (4π d)
Direction: Along the positive z-axis (**k̂**)
Case 2: Point at (0, 0, d)
Now, position vector 𝐫 = d k̂
d𝐥 × 𝐫 = dx î × d k̂ = dx·d (î × k̂) = dx·d (–ĵ)
So the magnetic field at (0, 0, d):
d𝐁 = (μ₀ / 4π) × (–I dx·d ĵ) / d² = –(μ₀ I dx) / (4π d) ĵ
Result:
Magnitude: (μ₀ I dx) / (4π d)
Direction: Along the negative y-axis (**–ĵ**)
Final Summary:
| Point | Magnitude of d𝐁 | Direction |
|---|
| (0, d, 0) | (μ₀ I dx) / (4π d) | +z direction (k̂) |
| (0, 0, d) | (μ₀ I dx) / (4π d) | –y direction (–ĵ) |