badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 12

                        

The probability of solving the specific problem independently by the persons’ A and B are 1/2 and 1/3 respectively. In case, if both the persons try to solve the problem independently, then calculate the probability that the problem is solved.

2 months ago

Answers : (1)

SJ
askIITians Faculty
42 Points
							welcome to askiitians

Given that, the two events say A and B are independent if P(A ∩ B) = P(A). P(B)

From the given data, we can observe that P(A) = 1/2 & P(B) = 1/3

The probability that the problem is solved = Probability that person A solves the problem or the person B solves the Problem

This can be written as:

= P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

If A and B are independent, then P(A ∩ B) = P(A). P(B)

Now, substitute the values,

= (1/2) × (1/3)

P(A ∩ B) = 1/6

Now, the probability of problem solved is written as

P(Problem is solved) = P(A) + P(B) – P(A ∩ B)

= (1/2) + (1/3) – (1/6)

= (3/6) + (2/6) – (1/6)

= 4/6

= 2/3

Hence, the probability of the problem solved is 2/3.
Thanks
2 months ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details