If p(x) be a polynomial of degree 3 satisfying p(−1) = 10, p(1) = −6 and p(x) has maximum at x = −1 and p′(x) has minima at x = 1. Find the distance between the local maximum and local minimum of the curve.
If p(x) be a polynomial of degree 3 satisfying p(−1) = 10, p(1) = −6 and p(x) has maximum at x = −1 and p′(x) has minima at x = 1. Find the distance between the local maximum and local minimum of the curve.