Flag Magical Mathematics[Interesting Approach]> inequalities...
question mark

if a3+ b3 = a-b show that a2 + b2 < 1 if a,b are +ve reals

anirudh alameluvari , 15 Years ago
Grade Upto college level
anser 1 Answers
AskIITians Expert PRASAD IIT Kharagpur

Last Activity: 15 Years ago

a,b positive reals so

a3 + b3 > 0    ,   so a - b > 0   so,  a > b.

As  a > 0, b > 0,     so, (a+b) > (a - b )   so ,  ((a-b) / (a + b)) < 1.

As,  a3 + b3 = a - b    so, a - a3  =  b + b3    so,  a/b = 1 + b2 / 1 - a2

Sy componendo-dividendo,    we have   (a+b)/(a-b) = (2 - a2 + b2) / (a2 + b2 )

so,  (a+b)/(a-b)  > 1,  we have   (2 - a2 + b2) > (a2 + b2 )which gives,     a2 < 1  so  0 <a <1,  as, b < a, so 0 < b < a < 1

so, ab<1.

a3 + b3  = a - b     given,

so, (a + b)(a2 + b2 - ab) = (a-b)

so,  a2 + b2 - ab  =   (a-b) / (a + b)

from above we have Right Hand Side less than 1,

so, a2 + b2 - ab < 1   so,  a2 + b2 < ab

 

As, ab < 1,

we have,           a2 + b2 < 1.

Hence Proved.

 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...