Last Activity: 14 Years ago
The circle is divided into 3 regions- a semicircle of area pR2/2, the region whose area is sought, and, a region of a circle of radius R, bounded by ,a chord whose mid point is R/2 from the centre, and the smaller arc of the circle. Consider a chord whose midpoint is between R/2 and R away from the centre. Call this distance ‘r’. It is easy to see that the area of this region is equal to a = ∫2√(R2-r2) dr from r=R/2 to R . Let r = Rcos(theta). a = ∫2R2 sin2(theta)d(theta).from theta = zero to (pi/3). sin2(theta) = (1-cos2(theta))/2
Thus a = R2((p/3) – ( √3/4)). So the area which the problem asks is
pR2/2 - R2((p/3) – ( √3/4)) = R2((π/6) +( √3/4))
p=π everywhere
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 3 Years ago