Flag Integral Calculus> What will be the value of this integral? ...
question mark

What will be the value of this integral? Please explain with proper steps!

Sanjiban Sengupta , 8 Years ago
Grade 12
anser 1 Answers
Nandana

Last Activity: 8 Years ago

hi !
  Ans : 5/4√ π erfi(sinx)-1/2 sinx esin2 x
     where erfi(sinx) is imaginary error in integration , which is ∫2/ √π eu2 du
EXP :
        ∫cosx e^sin2 x (1+cos2 x) dx
            sinx = y
            cosx dx = dy
                    =  ∫ e^y2 (2- y2 ) dy
                    =  2∫ e^y2  dy -∫ y2 e^y2  dy
               2∫ e^y2  dy    = √π ∫ 2/√π e^y2  dy
                                      = √π erfi (sinx)
            
                ∫ y2 e^y2  dy by using integration by part method
                 
                  u =y & dv = ye^y2 dy
                du = dy  v= ½  e^y2
               uv -∫v du  = ½ y e^y- ½∫ e^y2 dy
                                = ½ sinx e^sin2 x - √π/4 ∫ e^y2 dy
                                =½ sinx e^sin2 x - √π/4erfi(sinx)
 
             now, the overall integration is -
              
           
              2∫ e^y2  dy -∫ y2 e^y2  dy  = √π erfi (sinx) -[½ sinx e^sin2 x - √π/4erfi(sinx)]
                                                           
                                                          => 5√π /4 erfi(sinx) - ½ sinx e^sin2 x + K
                                                         where , K is orbitary constant
                     
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments