Flag Integral Calculus> ∫ tan ^3 (2x)sec (2x) dx give a hint to s...
question mark

∫ tan ^3 (2x)sec (2x) dx give a hint to solve it
please shows the beginning steps too

somi teez , 8 Years ago
Grade 12
anser 1 Answers
Vikas TU

Last Activity: 8 Years ago

Dear Student,
For the integrand tan^3(2 x) sec(2 x), substitute u = 2 x and du = 2 dx: =1/2 essential tan^3(u) sec(u) du 
For the integrand tan^3(u) sec(u), utilize the trigonometric personality tan^2(u) = sec^2(u) - 1: 
=1/2 vital tan(u) sec(u) (sec^2(u) - 1) du 
For the integrand tan(u) sec(u) (sec^2(u) - 1), substitute s = sec(u) and ds = tan(u) sec(u) du: =1/2 vital (s^2 - 1) ds 
Incorporating term by term and figuring out constants: 
=1/2 vital s^2 ds - 1/2 vital 1 ds 
vital of s^2 is s^3/3: 
=s^3/6 - 1/2 vital 1 ds 
vital of 1 is s:=s^3/6 - s/2 + consistent 
Substitute back for s = sec(u): 
=(sec^3(u))/6 - (sec(u))/2 + consistent 
Substitute back for u = 2 x: 
=1/6 sec^3(2 x) - 1/2 sec(2 x) + consistent 
Which is equivalent to: 
=> 1/6 sec(2 x) (sec^2(2 x) - 3) + c.
 
Cheers!!
Regards,
Vikas (B. Tech. 4th year
Thapar University)
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments