Flag Integral Calculus> solve this...plz..i can’t solve it ∫​(log...
question mark

solve this...plz..i can’t solve it∫​(log(logx)+1/(logx)^2) dx

Anushka Hazra , 6 Years ago
Grade 12
anser 1 Answers
Anish Singhal

Last Activity: 6 Years ago

Given ∫{log(logx) + 1/(logx)2}dx

we know that ∫ U.V dx = U ∫ V dx - ∫ ( d( U)/dx ∫ V dx ) dx.

⇒ ∫{log(logx) × 1 dx + ∫1/(logx)2dx

⇒ log(logx) ∫ 1 dx - ∫ ( d( log(logx))/dx ∫ 1 dx ) dx + ∫1/(logx)2dx [ d( log(logx))/dx = 1 / x × log x ]

⇒ log(logx) × x - ∫ [1 /x× logx] ×x) dx + ∫1/(logx)2dx

⇒ log(logx) × x - ∫ (1 / logx)× 1 dx + ∫1/(logx)2dx

⇒ log(logx) × x - [ (1 / logx)× ∫1 dx -∫d(1/log x)/ dx ∫ 1. dx] + ∫1/(logx)2dx

⇒ log(logx) × x - [ (1 / logx)× x -∫ [-1/(log x)2× (1/x) ×x] + ∫1/(logx)2dx

⇒ log(logx) × x - [ (1 / logx)× x + ∫ [1/(log x)2] + ∫1/(logx)2dx

⇒ log(logx) × x - (1 / logx)× x-∫ [1/(log x)2]+∫1/(logx)2dx

∴ x log(log x) - x / log x.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...