Flag Integral Calculus> Solve the problem ..........................
question mark

Solve the problem ........................................?

Manoj , 8 Years ago
Grade 12th pass
anser 1 Answers
Ritika Das
I = ∫√(tan x) dx
Let tan x = t2
⇒ sec2 x dx = 2t dt
⇒ dx = [2t / (1 + t4)]dt
⇒ Integral  ∫ 2t2 / (1 + t4) dt
⇒ ∫[(t2 + 1) + (t2 - 1)] / (1 + t4) dt
⇒ ∫(t2 + 1) / (1 + t4) dt + ∫(t2 - 1) / (1 + t4) dt
⇒ ∫(1 + 1/t2 ) / (t2 + 1/t2 ) dt + ∫(1 - 1/t2 ) / (t2 + 1/t2 ) dt
⇒ ∫(1 + 1/t2 )dt / [(t - 1/t)2 + 2] + ∫(1 - 1/t2)dt / [(t + 1/t)2 -2]
Let t - 1/t = u for the first integral ⇒ (1 + 1/t2 )dt = du
and t + 1/t = v for the 2nd integral ⇒ (1 - 1/t2 )dt = dv
Integral= ∫du/(u2 + 2) + ∫dv/(v2 - 2)
= (1/√2) tan-1 (u/√2) + (1/2√2) log(v -√2)/(v + √2)l + c
= (1/√2) tan-1 [(t2 - 1)/t√2] + (1/2√2) log (t2 + 1 - t√2) / t2 + 1 + t√2) + c
= (1/√2) tan-1 [(tanx - 1)/(√2tan x)] + (1/2√2) log [tanx + 1 - √(2tan x)] / [tan x + 1 + √(2tan x)] + c
Last Activity: 8 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments