KAPIL MANDAL
Last Activity: 8 Years ago
∫{(x7+1) / ln (x) }dx
At first, you put ln(x)=z
This gives, x=ez and x-1dx=dz
Then, ∫{(x7+1) / ln (x) }dx =∫{(x8+x) / z}dz = ∫{(e8z+ez) / z}dz.
Now you seperate those.
∫{(e8z+ez) / z}dz = ∫{(e8z) / z}dz + ∫{(ez) / z}dz. ….(1)
The formula you need to know is,
∫ecx/x dx = ln (x) +∑(cx)n/(n.n!)
Forget about summation part. it is going to be cancelled when you take both the limits. So, for this particular problem,
∫ecx/x dx = ln (x) .
So, the second part of eqn (1) is going to be cancelled as ln (1) = 0
Now you have only the first part.
Now simple algebra will lead you to the result.
Any problem you face, write here.