Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
`        Please explain how to solve the following integral.`
one year ago

```							we need to find integral of e^tanx*(sin2x+xsec^2x)we know that integral of e^tanx*f(x) is e^tanx*(f’(x)+f(x)sec^2x) so if we let f(x)= x then integral of e^tanx*x is e^tanx*(1+xsec^2x)so write e^tanx*(sin2x+xsec^2x) as e^tanx*(1+xsec^2x) – e^tanx*(1 – sin2x)obviously we know the integral of e^tanx*(1+xsec^2x) and now need to find e^tanx*(1 – sin2x)so put y= tanx and use the formula sin2x= 2tanx/(1+tan^2x)so integral becomes e^y(1 – 2y/(1+y^2))dy/(1+y^2)= e^y(1/(1+y^2) – 2y/(1+y^2)^2)if f(y)= 1/(1+y^2) then f’(y)= – 2y/(1+y^2)^2 so e^y(1/(1+y^2) – 2y/(1+y^2)^2)= e^y(f(y)+f’(y)) whose integral is known to be e^y*f(y)combining all these together, we get the final integral as e^tanx*(x – cos^2x) + C
```
one year ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Integral Calculus

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 51 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions