Flag Integral Calculus> options 7 3 5 1
question mark

options 7 3 5 1

Aditya Kartikeya , 10 Years ago
Grade 10
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
Hello Student,
Please find answer to your question below

\int_{0}^{\pi }(f(x)+f''(x))sinxdx = 5
\int_{0}^{\pi }[(f(x)+f''(x))sinx-f'(x)cosx+f'(x)cosx]dx = 5
\int_{0}^{\pi }[f(x)sinx+f''(x)sinx-f'(x)cosx+f'(x)cosx]dx = 5
\int_{0}^{\pi }[-(f'(x)cosx-sinxf(x))+sinxf''(x)+f'(x)cosx]dx = 5
\int_{0}^{\pi }-(cosxf(x))'dx+\int_{0}^{\pi }(sinxf'(x))dx = 5
[-(cosxf(x))]_{0}^{\pi }+(sinxf'(x))_{0}^{\pi } = 5
-(-f(\pi )-f(0)) = 5
f(\pi ) + f(0) = 5
2 + f(0) = 5
f(0) = 3


Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...