Flag Integral Calculus> options 7 3 5 1...
question mark

options
  1. 7
  1. 3
  2. 5
  3. 1

Aditya Kartikeya , 10 Years ago
Grade 10
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
Hello Student,
Please find answer to your question below

\int_{0}^{\pi }(f(x)+f''(x))sinxdx = 5
\int_{0}^{\pi }[(f(x)+f''(x))sinx-f'(x)cosx+f'(x)cosx]dx = 5
\int_{0}^{\pi }[f(x)sinx+f''(x)sinx-f'(x)cosx+f'(x)cosx]dx = 5
\int_{0}^{\pi }[-(f'(x)cosx-sinxf(x))+sinxf''(x)+f'(x)cosx]dx = 5
\int_{0}^{\pi }-(cosxf(x))'dx+\int_{0}^{\pi }(sinxf'(x))dx = 5
[-(cosxf(x))]_{0}^{\pi }+(sinxf'(x))_{0}^{\pi } = 5
-(-f(\pi )-f(0)) = 5
f(\pi ) + f(0) = 5
2 + f(0) = 5
f(0) = 3


star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments