Flag Integral Calculus> Integration of [(x^2 -1)/(x^3 (sqrt(2x^4 ...
question mark

Integration of [(x^2 -1)/(x^3 (sqrt(2x^4 -2x^2 +1)))]dx=?

John Doe , 10 Years ago
Grade 12th pass
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
I = \int \frac{x^{2}-1}{x^{3}\sqrt{2x^{4}-2x^{2}+1}}dx
u = x^{2}
du = 2x.dx
I = \frac{1}{2}\int \frac{\frac{1}{u}-\frac{1}{u^{2}}}{\sqrt{2u^{2}-2u+1}}dx
I = \frac{1}{2}\int \frac{\frac{1}{u}-\frac{1}{u^{2}}}{\sqrt{(\sqrt{2}u-\frac{1}{\sqrt{2}})^{2}+\frac{1}{2}}}dx
s = \sqrt{2}u-\frac{1}{\sqrt{2}}
ds = \sqrt{2}du
I = \frac{1}{2\sqrt{2}}\int \frac{\frac{2\sqrt{2}}{2s+\sqrt{2}}-\frac{8}{(2s+\sqrt{2})^{2}}}{\sqrt{s^{2}+\frac{1}{2}}}ds
s = \frac{tan(t)}{\sqrt{2}}
ds = \frac{sec^{2}(t)}{\sqrt{2}}dt
I = \frac{1}{2\sqrt{2}}\int (\frac{2\sqrt{2}}{\sqrt{2}tan(t)+\sqrt{2}}-\frac{8}{(\sqrt{2}tan(t)+\sqrt{2})^{2}})dt
w = tan(\frac{t}{2})
dw = \frac{1}{2}.sec^{2}(\frac{t}{2})dt
I = \frac{1}{2\sqrt{2}}\int \frac{4(w^{2}+2w-1)}{w^{4}-4w^{3}+2w^{2}+4w+1}dw
Just apply the partial fraction here, you will get
I = \frac{\sqrt{2x^{4}-2x^{2}+1}}{2x^{2}} + constant
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...