badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 12

                        

Integration of tanx tna2x tan3x dx please sir , give the answer this question

4 years ago

Answers : (1)

Naveen Ak Nair
25 Points
							

(tanxtan2xtan3x)dx=ln(|sec(3x)|)3ln(|sec(2x)|)2ln(|secx|)+C

Explanation:

We can rewrite tanxtan2xtan3x in a way that is much easier to integrate. First, find out how else to write tan3x using the tangent angle addition formula.

tan(A+B)=tanA+tanB1tanAtanB

 

So, we see that:

tan3x=tan(x+2x)=tanx+tan2x1tanxtan2x

Cross-multiplying:

(1tanxtan2x)tan3x=tanx+tan2x

Distributing

tan3xtanxtan2xtan3x=tanx+tan2x

Solving for tanxtan2xtan3x:

tanxtan2xtan3x=tan3xtan2xtanx

Thus:

(tanxtan2xtan3x)dx=(tan3xtan2xtanx)dx

Splitting this apart:

=tan3xdxtan2xdxtanxdx

Note that tanxdx=ln(|secx|)+C. The first two integrals will require using substitution: let u=3xdu=3dx and v=2xdv=2dx.

Hence a final answer of:

=ln(|sec(3x)|)3ln(|sec(2x)|)2ln(|secx|)+C

4 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 51 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details