badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 12

                        

Integration of [(cosx)^3+(cosx)^5]/[(sinx)^2+(sinx)^4] with respect to x

3 years ago

Answers : (1)

ramya
20 Points
							
int = integration
 
= int {[cos^3(x)][(cos^2(x)] + 1}/{[sin^2(x)][sin^2(x)+1]} dx
 
use cos^2(x) as 1 - sin^2(x)
= int cos(x) * {[sin^2(x)][sin^2(x)-1}/{[sin^2(x)][sin^2(x)+1} dx
                    substitute u = sinx
                            dx = 1/[cos(x)] du
= int {[u^2 - 2][u^2 - 1]}/{u^2[u^2 + 1]} du
= int {[2 - 4u^2]/[u^2(u^2 + 1)} + 1 du
= int 1 du - 2 int {[2u^2 - 1]/u^2(u^2 + 1)} du
Know, int {[2u^2 - 1]/u^2(u^2 + 1)} du
      = int {[3/(u^2 + 1)] - [1/u^2]} du
      = 3 int [1/(u^2 + 1)] du - int [1/u^2] du
Know, int [1/(u^2 + 1)] du
      = tan^-1(u)
                   and int [1/u^2] du
                        = -1/u
                             int 1 du = u
 Therefore, 3 int [1/(u^2 + 1)] du - int [1/u^2] du
            = 3 tan^-1(u) + 1/u
Hence  int 1 du - 2 int {[2u^2 - 1]/u^2(u^2 + 1)} du 
      = u - 6 tan^-1(u) - 2/u
    => sin(x) - 6 tan^-1(sin(x)) - 2/sin(x) + C
    => sin(x) - 6 tan^-1(sin(x)) - 2 cos(x) + C
3 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 51 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details