Flag Integral Calculus> Integration of ∫ (2-tanx)^1/2 . i have se...
question mark

Integration of∫(2-tanx)^1/2 . i have searched whole of google and also tried using the method of tanx^1/2 but reaching to no conclusion

Nishant Laddha , 7 Years ago
Grade 12
anser 1 Answers
Vikas TU

Last Activity: 7 Years ago

Dear Student,
  
integral sqrt(2 - tan(x)) dx
For integrand sqrt(2 - tan(x)), substitute u= 2 - tan(x) and  du= -sec^2(x)  dx:
= integral -sqrt(u)/((2 - u)^2 + 1) du
=- integral sqrt(u)/((2 - u)^2 + 1) du
For integrand sqrt(u)/((2 - u)^2 + 1), substitute s= sqrt(u) and  ds= 1/(2 sqrt(u))  du:
=-2 integral s^2/((2 - s^2)^2 + 1) ds=-2 integral s^2/(s^4 - 4 s^2 + 5) ds
=-2 integral s^2/((s^2 - (2 + i)) (s^2 - (2 - i))) ds
using partial fractions:
=-2 integral ((1/2 + i)/(s^2 - (2 - i)) + (1/2 - i)/(s^2 - (2 + i))) ds
now integrating termwise-
=-1 - 2 i integral 1/(s^2 - (2 - i)) ds + -1 + 2 i integral 1/(s^2 - (2 + i)) ds
Factor -2 + i from denominator:
=-1 - 2 i integral -(2/5 + i/5)/(1 - (2/5 + i/5) s^2) ds + -1 + 2 i integral 1/(s^2 - (2 + i)) ds
=i integral 1/(1 - (2/5 + i/5) s^2) ds + -1 + 2 i integral 1/(s^2 - (2 + i)) ds
For integrand 1/(1 - (2/5 + i/5) s^2), substitute p= sqrt(-2/5 - i/5) s and  dp= sqrt(-2/5 - i/5)  ds:
=(-1 - 2 i) sqrt(-2/5 - i/5) integral 1/(p^2 + 1) dp + -1 + 2 i integral 1/(s^2 - (2 + i)) ds
 integral of 1/(p^2 + 1) is tan^(-1)(p):
=(-1 - 2 i) sqrt(-2/5 - i/5) tan^(-1)(p) + -1 + 2 i integral 1/(s^2 - (2 + i)) ds
Factor -2 - i from denominator:
=(-1 - 2 i) sqrt(-2/5 - i/5) tan^(-1)(p) - i integral 1/(1 - (2/5 - i/5) s^2) ds
For integrand 1/(1 - (2/5 - i/5) s^2), substitute w= sqrt(-2/5 + i/5) s and  dw= sqrt(-2/5 + i/5)  ds:
=(-1 - 2 i) sqrt(-2/5 - i/5) tan^(-1)(p) + (-1 + 2 i) sqrt(-2/5 + i/5) integral 1/(w^2 + 1) dw
 integral of 1/(w^2 + 1) is tan^(-1)(w):
=(-1 - 2 i) sqrt(-2/5 - i/5) tan^(-1)(p) - (1 - 2 i) sqrt(-2/5 + i/5) tan^(-1)(w) + c
Substitute back for w= sqrt(-2/5 + i/5) s:
=(-1 - 2 i) sqrt(-2/5 - i/5) tan^(-1)(p) - (1 - 2 i) sqrt(-2/5 + i/5) tan^(-1)(sqrt(-2/5 + i/5) s) + c
Substitute back for p= sqrt(-2/5 - i/5) s:
=(-1 - 2 i) sqrt(-2/5 - i/5) tan^(-1)(sqrt(-2/5 - i/5) s) - (1 - 2 i) sqrt(-2/5 + i/5) tan^(-1)(sqrt(-2/5 + i/5) s) + c
Substitute back for s= sqrt(u):
=(-1 - 2 i) sqrt(-2/5 - i/5) tan^(-1)(sqrt(-2/5 - i/5) sqrt(u)) - (1 - 2 i) sqrt(-2/5 + i/5) tan^(-1)(sqrt(-2/5 + i/5) sqrt(u)) + c
Substitute back for u= 2 - tan(x):
=(-1 - 2 i) sqrt(-2/5 - i/5) tan^(-1)(sqrt(-2/5 - i/5) sqrt(2 - tan(x))) - (1 - 2 i) sqrt(-2/5 + i/5) tan^(-1)(sqrt(-2/5 + i/5) sqrt(2 - tan(x))) + c
=-((1 + 2 i) sqrt(-2 - i) tan^(-1)(sqrt(-2/5 - i/5) sqrt(2 - tan(x))) + (1 - 2 i) sqrt(-2 + i) tan^(-1)(sqrt(-2/5 + i/5) sqrt(2 - tan(x))))/sqrt(5) + c
So ans
= i (sqrt(2 - i) tanh^(-1)(sqrt(2 - tan(x))/sqrt(2 - i)) - sqrt(2 + i) tanh^(-1)(sqrt(2 - tan(x))/sqrt(2 + i))) + c
Cheers!!
Regards,
Vikas (B. Tech. 4th year
Thapar University)

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...