Flag Integral Calculus> Integrate the following:- ∫(sin^6 x+cos^6...
question mark

Integrate the following:-
∫(sin^6 x+cos^6 x)/sin^2 x.cos^2 x dx

Sudipan Datta , 7 Years ago
Grade 12
anser 3 Answers
Arun

Last Activity: 7 Years ago

First note that sin6(x)+cos6(x) is a sum of two cubes (sin2(x))3+(cos2(x))3 so it can be factored using a3+b3=(a+b)(a2ab+b2) and the Pythagorean identity to get

sin6(x)+cos6(x)=(sin2(x))3+(cos2(x))3

=(sin2(x)+cos2(x))(sin4(x)sin2(x)cos2(x)+cos4(x))

=sin4(x)sin2(x)cos2(x)+cos4(x).

Therefore,

sin6x+cos6xsin2(x)cos2(x)=sin4(x)sin2(x)cos2(x)+cos4(x)sin2(x)cos2(x)

=tan2(x)1+cot2(x)

But tan2(x)=sec2(x)1 and cot2(x)=csc2(x)1. Hence,

sin6x+cos6xsin2(x)cos2(x)=sec2(x)+csc2(x)3 and thus

sin6(x)+cos6(x)sin2(x)cos2(x) dx=sec2(x)+csc2(x)3 dx

=tan(x)cot(x)3x+C

tuhar

Last Activity: 5 Years ago

=sin6(x)/sin2x.cos2x+cos6(x)/sin2x.cos2x
=sin4x/cos2x+cos4x/sin2x
=(1-cos2x)2/cos2x + (1-sin2x)2/sin2x
=(1-2cos2x+cos4x)/cos2x + (1-2sin2x+sin4x)/sin2x
=sec2x -2 + cos2x + cosec2x -2 + sin2x
=sec2x + cosec2x -4 + 1
=sec2x + cosec2x -3
so, by integration we get,
=tan x – cot x -3x + C


 

Rishi Sharma

Last Activity: 4 Years ago

Dear Student,
Please find below the solution to your problem.

first resolve , sin^6x + cos^6x
= (sin²x)³ + (cos²x)³
= (sin²x + cos²x)(sin⁴x + cos⁴x - sin²x.cos²x)
=(sin²x + cos²x) {(sin²x + cos²x)² - 3sin²x.cos²x}
but we know, sin²x + cos²x = 1
so, sin^6x + cos^6x = (1 - 3sin²x.cos²x)
or, you can write cos^6x + cos^6x = sin²x + cos²x - 3sin²x.cos²x [ as we know, sin²x + cos²x = 1 ]
645-2060_0001.PNG
Thanks and Regards

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free