Flag Integral Calculus> integrate:(6+ 3sin x + 14cos x) / (3+4sin...
question mark

integrate:(6+ 3sin x + 14cos x) / (3+4sin x+5cos x)

Sriparnika Sarkar , 8 Years ago
Grade 12th pass
anser 1 Answers
Vikas TU

Last Activity: 8 Years ago

Dear Student,
         integral (3 sin(x) + 14 cos(x) + 6)/(4 sin(x) + 5 cos(x) + 3) dx
For the integrand (3 sin(x) + 14 cos(x) + 6)/(4 sin(x) + 5 cos(x) + 3),
substitute u = tan(x/2) and  du = 1/2  dx sec^2(x/2). Then transform the integrand using the substitutions sin(x) = (2 u)/(u^2 + 1), cos(x) = (1 - u^2)/(u^2 + 1) and  dx = (2  du)/(u^2 + 1):
  =integral (2 ((6 u)/(u^2 + 1) + (14 (1 - u^2))/(u^2 + 1) + 6))/((u^2 + 1) ((8 u)/(u^2 + 1) + (5 (1 - u^2))/(u^2 + 1) + 3)) du
Simplify the integrand (2 ((6 u)/(u^2 + 1) + (14 (1 - u^2))/(u^2 + 1) + 6))/((u^2 + 1) ((8 u)/(u^2 + 1) + (5 (1 - u^2))/(u^2 + 1) + 3)) to get (8 u^2 - 6 u - 20)/(u^4 - 4 u^3 - 3 u^2 - 4 u - 4):
  =integral (8 u^2 - 6 u - 20)/(u^4 - 4 u^3 - 3 u^2 - 4 u - 4) du
For the integrand (8 u^2 - 6 u - 20)/(u^4 - 4 u^3 - 3 u^2 - 4 u - 4), partial fractions:
  =integral ((4 - 2 u)/(u^2 + 1) + 1/(u - 2 sqrt(2) - 2) + 1/(u + 2 sqrt(2) - 2)) du
Integrating term by term:
  =integral (4 - 2 u)/(u^2 + 1) du +  integral 1/(u + 2 sqrt(2) - 2) du +  integral 1/(u - 2 sqrt(2) - 2) du
  =integral -(2 (u - 2))/(u^2 + 1) du +  integral 1/(u + 2 sqrt(2) - 2) du +  integral 1/(u - 2 sqrt(2) - 2) du
  =-2 integral (u - 2)/(u^2 + 1) du +  integral 1/(u + 2 sqrt(2) - 2) du +  integral 1/(u - 2 sqrt(2) - 2) du
Expanding the integrand (u - 2)/(u^2 + 1) gives u/(u^2 + 1) - 2/(u^2 + 1):
  =-2 integral (u/(u^2 + 1) - 2/(u^2 + 1)) du +  integral 1/(u + 2 sqrt(2) - 2) du +  integral 1/(u - 2 sqrt(2) - 2) du
Integrate term by term and factor out constant:
  =-2 integral u/(u^2 + 1) du + 4 integral 1/(u^2 + 1) du +  integral 1/(u + 2 sqrt(2) - 2) du +  integral 1/(u - 2 sqrt(2) - 2) du
For u/(u^2 + 1), substitute s = u^2 + 1 and  ds = 2 u  du:
  =- integral 1/s ds + 4 integral 1/(u^2 + 1) du +  integral 1/(u + 2 sqrt(2) - 2) du +  integral 1/(u - 2 sqrt(2) - 2) du
The integral of 1/s is log(s):
  =-log(s) + 4 integral 1/(u^2 + 1) du +  integral 1/(u + 2 sqrt(2) - 2) du +  integral 1/(u - 2 sqrt(2) - 2) du
The integral of 1/(u^2 + 1) is tan^(-1)(u):
  =4 tan^(-1)(u) - log(s) +  integral 1/(u + 2 sqrt(2) - 2) du +  integral 1/(u - 2 sqrt(2) - 2) du
For 1/(u + 2 sqrt(2) - 2), substitute p = u + 2 sqrt(2) - 2 and  dp =du:
  =4 tan^(-1)(u) - log(s) +  integral 1/p dp +  integral 1/(u - 2 sqrt(2) - 2) du
The integral of 1/p is log(p):
  =4 tan^(-1)(u) + log(p) - log(s) +  integral 1/(u - 2 sqrt(2) - 2) du
For the integrand 1/(u - 2 sqrt(2) - 2), substitute w = u - 2 sqrt(2) - 2 and  dw =du:
  =4 tan^(-1)(u) + log(p) - log(s) +  integral 1/w dw
The integral of 1/w is log(w):
  =log(p) - log(s) + 4 tan^(-1)(u) + log(w) + constant
Substitute back for w = u - 2 sqrt(2) - 2:
  =log(p) - log(s) + log(u - 2 sqrt(2) - 2) + 4 tan^(-1)(u) + constant
Substitute back for p = u + 2 sqrt(2) - 2:
  =-log(s) + log(u - 2 sqrt(2) - 2) + log(u + 2 sqrt(2) - 2) + 4 tan^(-1)(u) + constant
Substitute back for s = u^2 + 1:
  =-log(u^2 + 1) + log(u - 2 sqrt(2) - 2) + log(u + 2 sqrt(2) - 2) + 4 tan^(-1)(u) + constant
Substitute back for u = tan(x/2):
  =2 x + log(tan(x/2) - 2 sqrt(2) - 2) + log(tan(x/2) + 2sqrt(2)- 2) - log(sec^2(x/2)) + constant
can be written as,
  =2 x + log(1/2 (-4 sin(x) - 5 cos(x) - 3)) + c
so ans=2 x + log(4 sin(x) + 5 cos(x) + 3) + c.
Cheers!!
Regards,
Vikas (B. Tech. 4th year
Thapar University)
 
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments